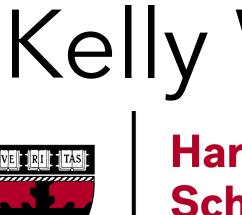
Statistical Inference for Adaptive Experimentation

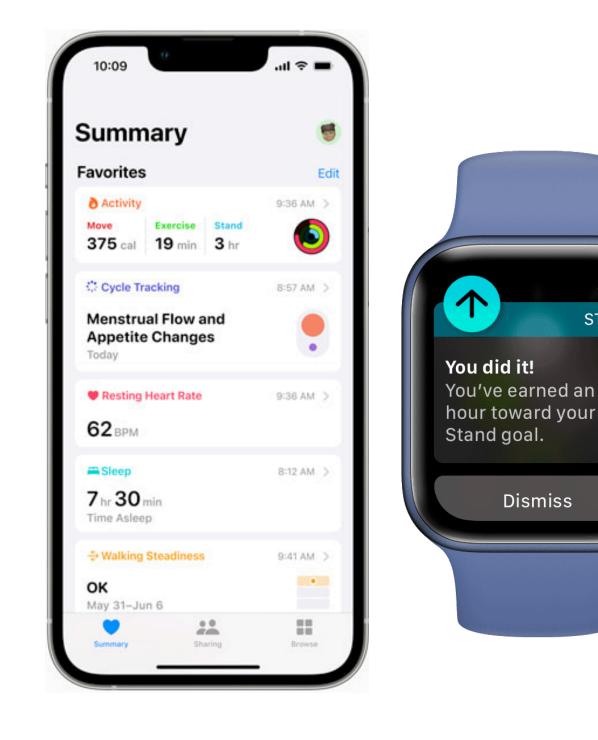


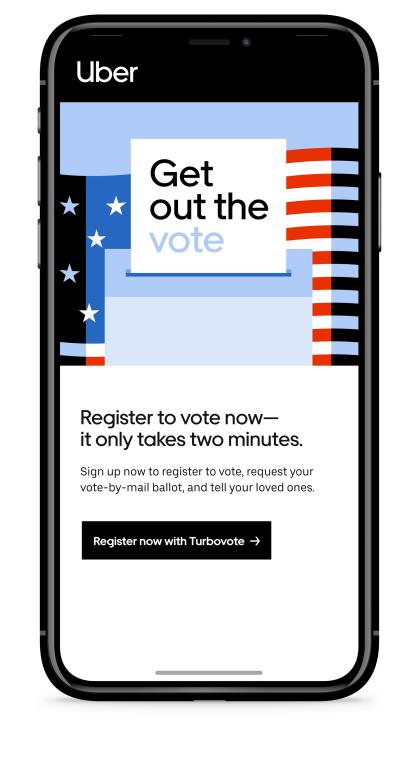
Thesis Defense. April 26, 2023. Advisors: Susan Murphy and Lucas Janson

Kelly W. Zhang

Harvard John A. Paulson **School of Engineering** and Applied Sciences

Our lives are becoming increasingly digitalized...





Healthcare

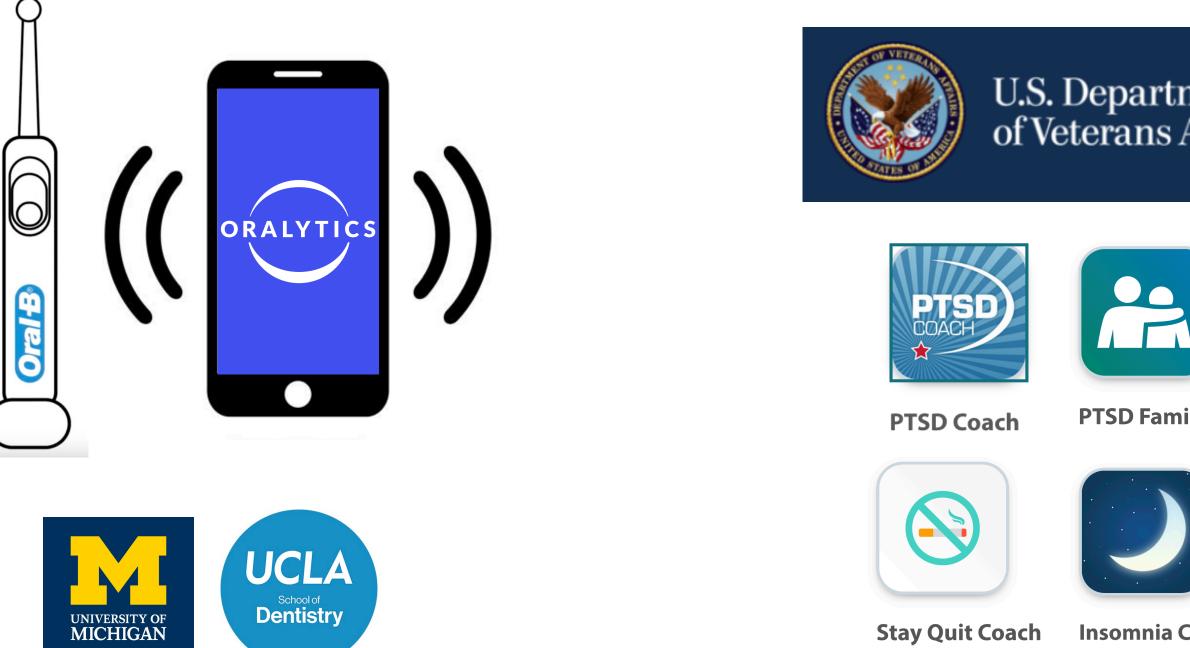
3:51

STAND

Public Policy

Education

Opportunity: Develop Digital Interventions



Digital Oral Health Coaching

Mobile Health Apps Developed by U.S. Veterans Affairs

U.S. Department of Veterans Affairs

PTSD Family Coach

Insomnia Coach

Challenge: Learning what interventions to deliver—and when

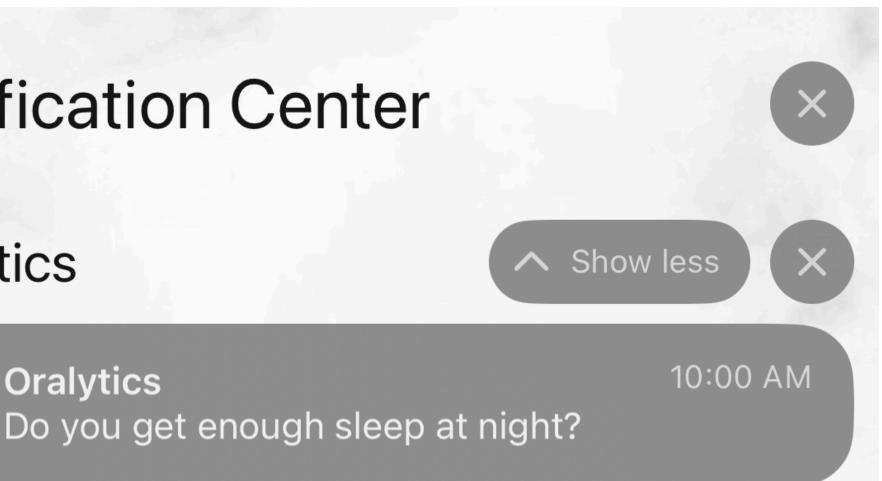
Notification Center

Minimize: User Burden

Oralytics

Oralytics

Oralytics Regional Food Bank Account.



Yesterday, 10:00 PM People like you make a real difference. Redeem a \$0.5 gift from Oralytics to your Los Angeles

Maximize: User Benefit

Challenge: Learning what interventions to deliver—and when

Notification Center

Minimize: User Burden

Online Reinforcement Learning (RL)

from Oralytics to your Los Angeles Regional Food Bank Account.

Maximize: User Benefit

Online Reinforcement Learning (RL)

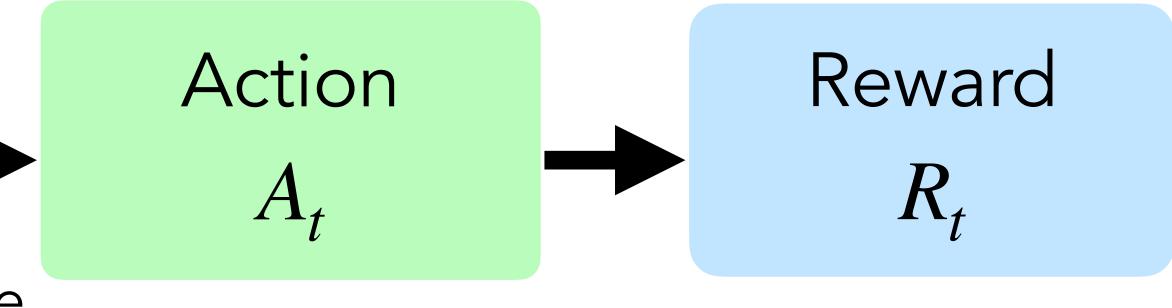
 $\hat{\pi}_t(S_t)$

Probability of sending a message

Time of Day, Recent Brushing, App Engagement

 S_t, A_t, R_t definitions are design decisions

Oralytics Setting



Whether to send a message (binary)

Brushing Quality

Use (S_t, A_t, R_t) to update and form $\hat{\pi}_{t+1}$

My research focus is developing methodology to facilitate real-world deployments of online RL for digital interventions

Causal Inference for Sequential Decision Making Designing Practical RL Algorithms for Real-World Deployments

Digital Intervention Study Design Objectives

Within-Study Personalization

Maximize User Benefit

• Send messages at opportune moments

Use Online RL Algorithms to maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]$

- **After-Study Analyses Evaluate the Intervention**
- Understand heterogeneity across user types and user states

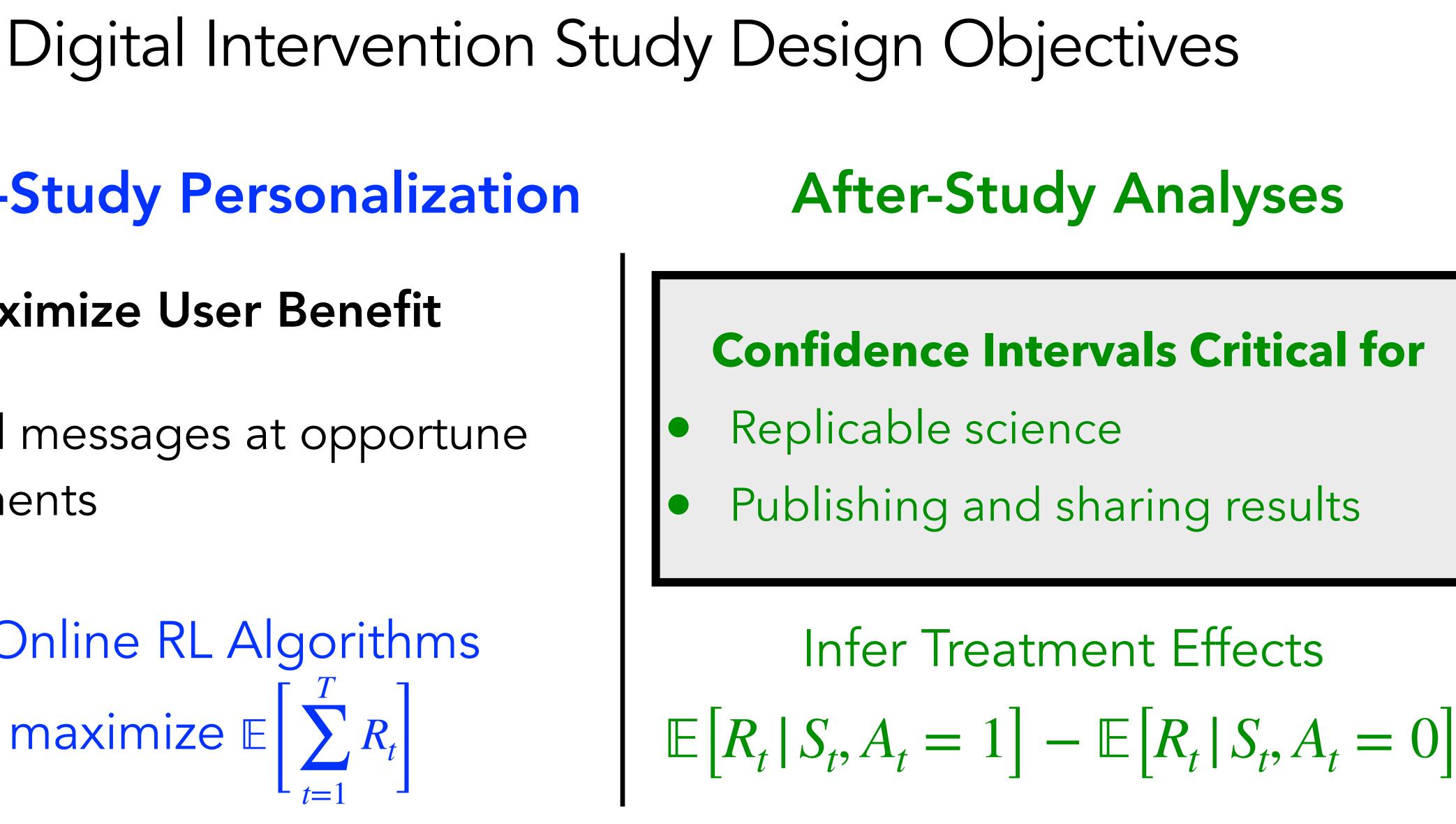
Infer Treatment Effects $\mathbb{E}\left[R_t \mid S_t, A_t = 1\right] - \mathbb{E}\left[R_t \mid S_t, A_t = 0\right]$

Within-Study Personalization

Maximize User Benefit

 Send messages at opportune moments

Use Online RL Algorithms to maximize E





RL Algorithms Induce Dependence

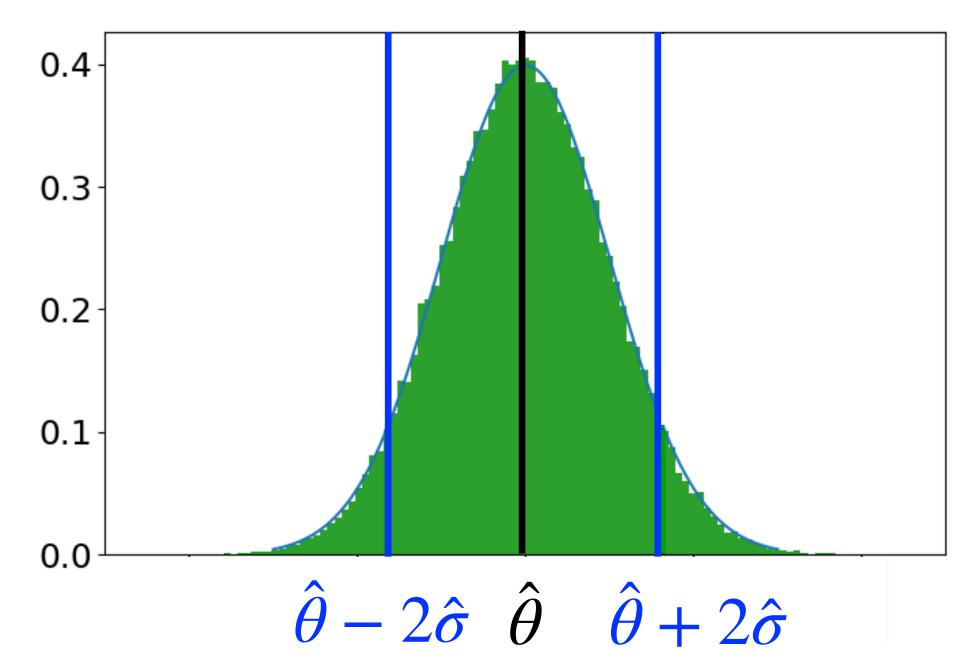
Data tuples (S_t, A_t, R_t) are not independent over $t \in [1: T]$ • RL data is "adaptively collected"

Consequences for Statistical Inference

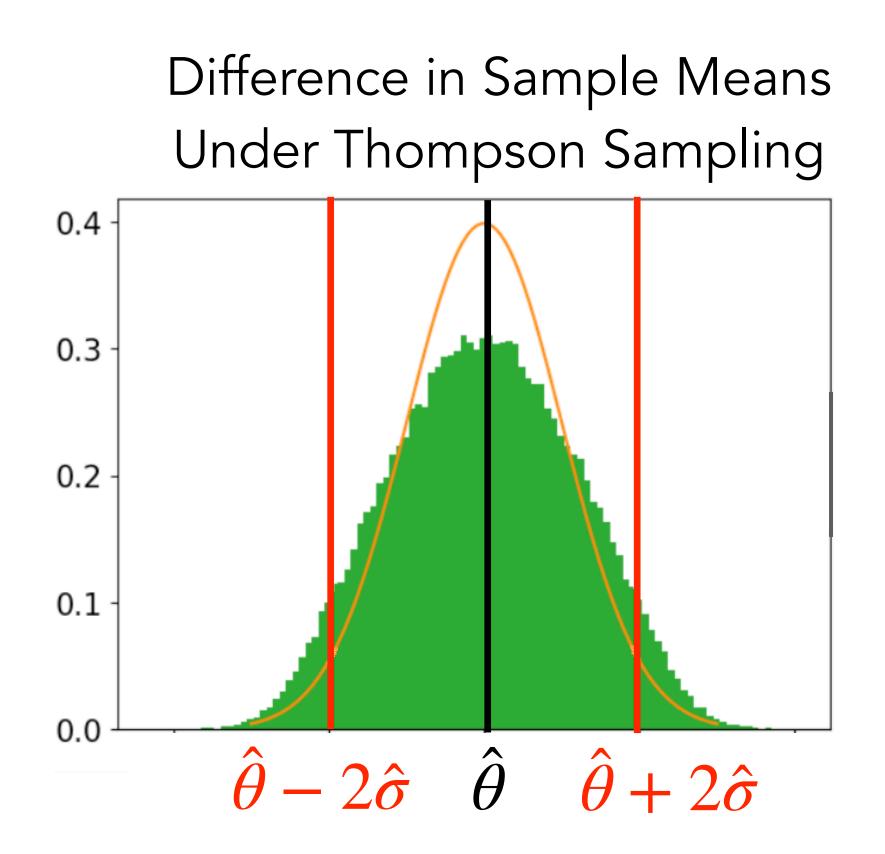
- Bias [Nie et al., '18] [Shin, Ramdas, Rinaldo; '19, '20]
- Asymptotic Non-Normality [Zhang, Janson, Murphy; '20]

Consequences of Dependence for Statistical Inference [Zhang, Janson, & Murphy, NeurIPS 2020]

Difference in Sample Means Independently Collected Data



95% Percent Confidence Interval



Only 89.5% coverage (expect 95%)

Contributions

Inference for Batched Bandits NeurIPS 2020 **Zhang**, Janson, & Murphy

Statistical Inference for M-Estimators on Adaptively Collected Data *NeurIPS 2021* **Zhang**, Janson, & Murphy

Statistical Inference Adaptive Sampling for Longitudinal Data Under review Zhang, Janson, & Murphy

Contributions

Inference for Batched Bandits NeurIPS 2020 **Zhang**, Janson, & Murphy

Statistical Inference for M-Estimators on Adaptively Collected Data *NeurIPS 2021* **Zhang**, Janson, & Murphy

Statistical Inference Adaptive Sampling for Longitudinal Data Under review at Annals of Statistics Zhang, Janson, & Murphy

Impact / Use Cases

Political Science: Survey Methods to Understand Voter Views

Offer-Westort, Coppock, & Green, 2022

COLUMBIA University

Contributions

Inference for Batched Bandits NeurIPS 2020 **Zhang**, Janson, & Murphy

Statistical Inference for M-Estimators on Adaptively Collected Data *NeurIPS 2021* **Zhang**, Janson, & Murphy

Statistical Inference Adaptive Sampling for Longitudinal Data Under review Zhang, Janson, & Murphy

Impact / Use Cases

Education: Automated Phone Calls to Encourage Parental Involvement

Esposito & Sautmann, 2022

Contributions

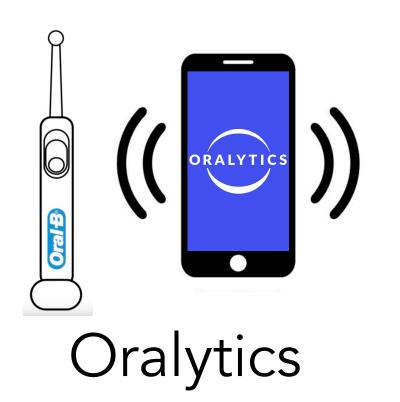
Inference for Batched Bandits NeurIPS 2020 **Zhang**, Janson, & Murphy

Statistical Inference for M-Estimators on Adaptively Collected Data *NeurIPS 2021* **Zhang**, Janson, & Murphy

Statistical Inference Adaptive Sampling for Longitudinal Data Under review Zhang, Janson, & Murphy

Impact / Use Cases

Digital Health: Enables use of online RL algorithms that combine data across users to learn



MiWaves

Part 1: **Contextual Bandit Setting**

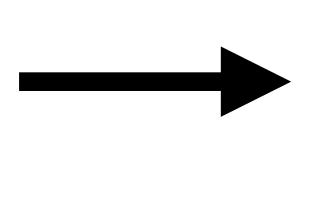
Online Advertising

Part 2: Longitudinal Data Setting

Digital Health

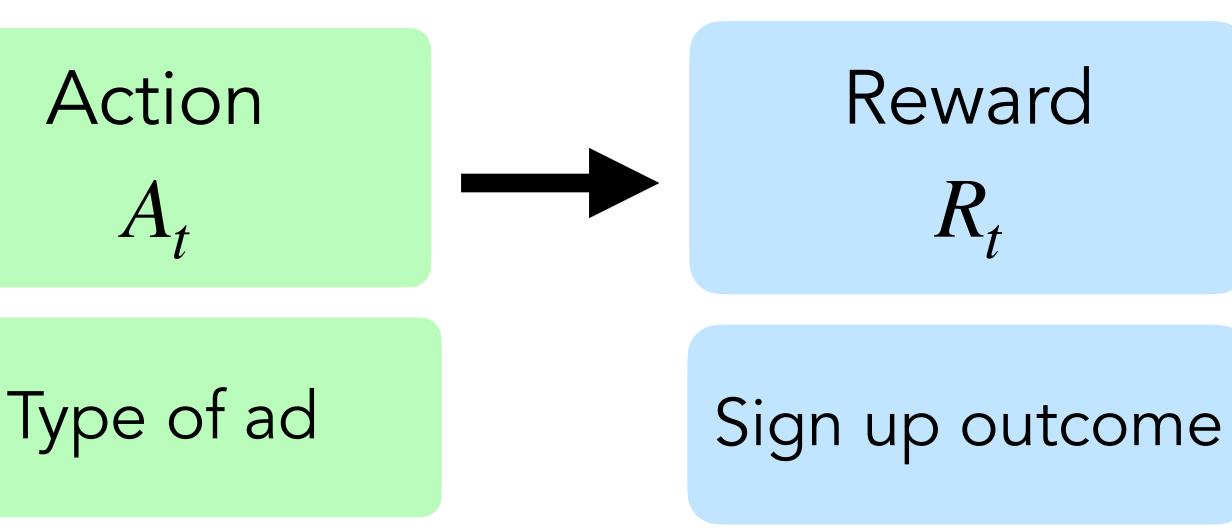
Part 1: Contextual Bandit Environment

Online Advertising Setting



Demographic Info

At each decision time $t \in [1:T]$ we see a new user



Contextual Bandit Environment

Act

Potential Outcomes: $\left\{S_{t}, R_{t}(0), R_{t}(1)\right\}_{t=1}^{T}$ i.i.d. over t

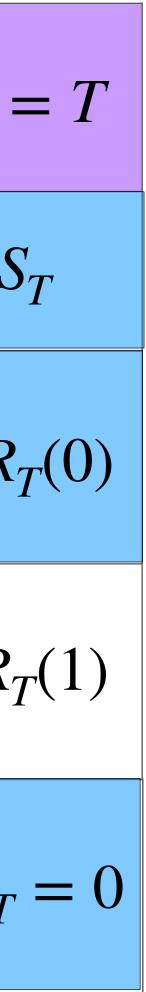
Data Tuple: $D_t = (S_t, A_t, R_t)$

Action selection probabilities: $\mathbb{P}\left(A_t = 1 \mid D_{1:t-1}, S_t\right)$

> (S_t, A_t, R_t) dependent over time $t \in [1: T]!!$

					-
Potential Outcomes	<i>t</i> = 1	<i>t</i> = 2	t = T	• • •	<i>t</i> =
States	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	• • •	S
Rewards Under Action 0	$R_{1}(0)$	$R_{2}(0)$	$R_{3}(0)$	•••	R
Rewards Under Action 1	$R_{1}(1)$	$R_{2}(1)$	<i>R</i> ₃ (1)	•••	R
tions Selected by RL Algorithm	$A_1 = 0$	$A_2 = 1$	$A_3 = 1$	•••	A_T

Blue indicates observed data



Inferential Goal

Parameters in an outcome model

- Linear Model: $\mathbb{E}[R_t | S_t, A_t] = S_t^{\top} \theta_0^{\star} + A_t S_t^{\top} \theta_1^{\star}$ • Logistic Model: $\mathbb{E}\left[R_t | S_t, A_t\right] = \left[1 + \exp\left(S_t^{\mathsf{T}} \theta_0^{\star} + A_t S_t^{\mathsf{T}} \theta_1^{\star}\right)\right]^{-1}$ • Poisson Model: $\mathbb{E}\left[R_t | S_t, A_t\right] = \log\left[S_t^{\mathsf{T}} \theta_0^{\star} + A_t S_t^{\mathsf{T}} \theta_1^{\star}\right]$

Interested in Treatment Effect $\mathbb{E}\left[R_t \mid S_t, A_t = 1\right] - \mathbb{E}\left[R_t \mid S_t, A_t = 0\right]$

Inferential Goal

Parameters in an outcome model

- Linear Model: $\mathbb{E}[R_t | S_t, A_t] = S_t^\top \theta_0^\star + A_t S_t^\top \theta_1^\star$ • Logistic Model: $\mathbb{E}\left[R_t | S_t, A_t\right] = \left[1 + \exp\left(S_t^{\mathsf{T}} \theta_0^{\star} + A_t S_t^{\mathsf{T}} \theta_1^{\star}\right)\right]^{-1}$ • Poisson Model: $\mathbb{E}\left[R_t | S_t, A_t\right] = \log\left[S_t^{\top} \theta_0^{\star} + A_t S_t^{\top} \theta_1^{\star}\right]$

Treatment effect parameter θ_1^{\star}

Interested in Treatment Effect $\mathbb{E}\left[R_t \mid S_t, A_t = 1\right] - \mathbb{E}\left[R_t \mid S_t, A_t = 0\right]$

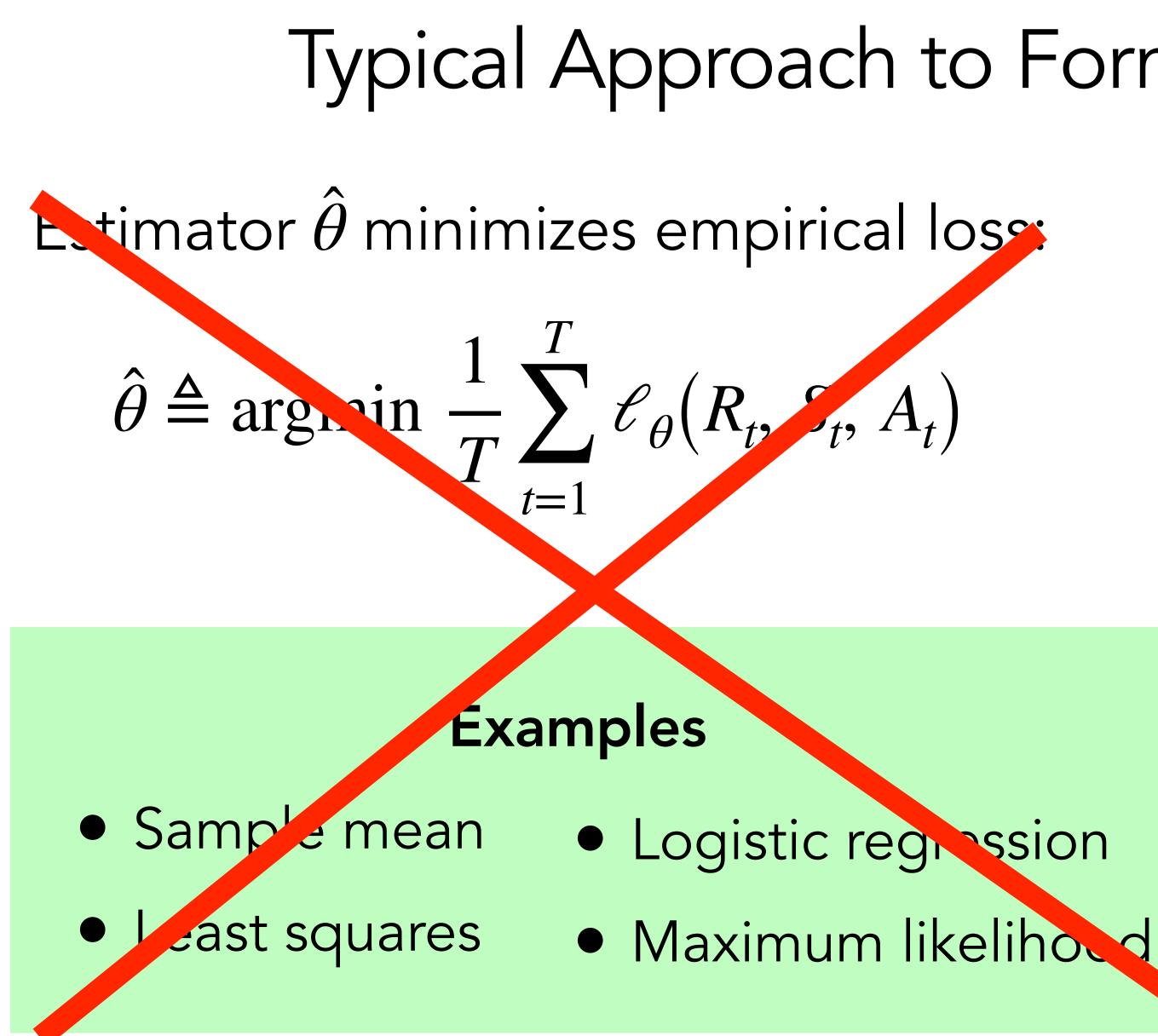
Typical Approach to Forming Estimators

Estimator $\hat{\theta}$ minimizes empirical loss:

$$\hat{\theta} \triangleq \operatorname{argmin} \frac{1}{T} \sum_{t=1}^{T} \ell_{\theta}(R_t, S_t, A_t)$$

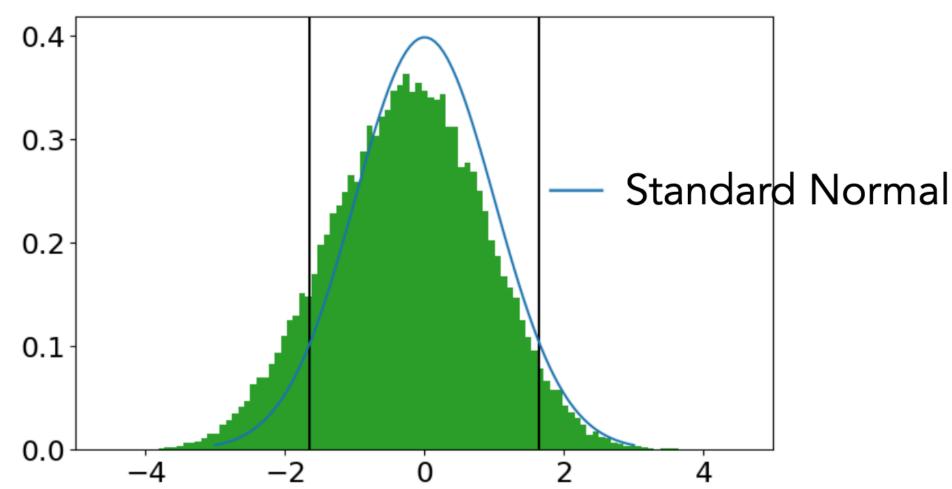
Examples

- Sample mean
 Logistic regression
- Least squares
 Maximum likelihood



Typical Approach to Forming Estimators

Empirical Distribution of Z-Statistic for the Sample Mean



Coverage: 84.9% (Nominal 90%)

Thompson Sampling; $\mathcal{N}(0,1)$ errors; T = 1000

Previous Approaches

Inference after Adaptive Sampling

[Hadad et al., 2021; Bibaut et al. 2021; Zhan et al. 2022; Deshpande et al., 2018]

- Off policy evaluation and infer parameters in simple models
- Cannot be used to infer parameters of general models

High Probability Bounds

[Abbasi-Yadkori et al., 2011; Kaufman et al., 2018; Jamieson et al., 2014; Howard et al., 2021]

- Finite sample guarantees
- Conservative need much larger sample sizes

Adaptive Weighting Approach

Estimator $\hat{\theta}$ minimizes empirical loss:

$$\hat{\theta} \triangleq \operatorname{argmin} \frac{1}{T}$$

Adaptive Square-Root **Inverse Propensity Weights** $\sqrt{\mathbb{P}(A_t | D_{1:t-1}, S_t)}$

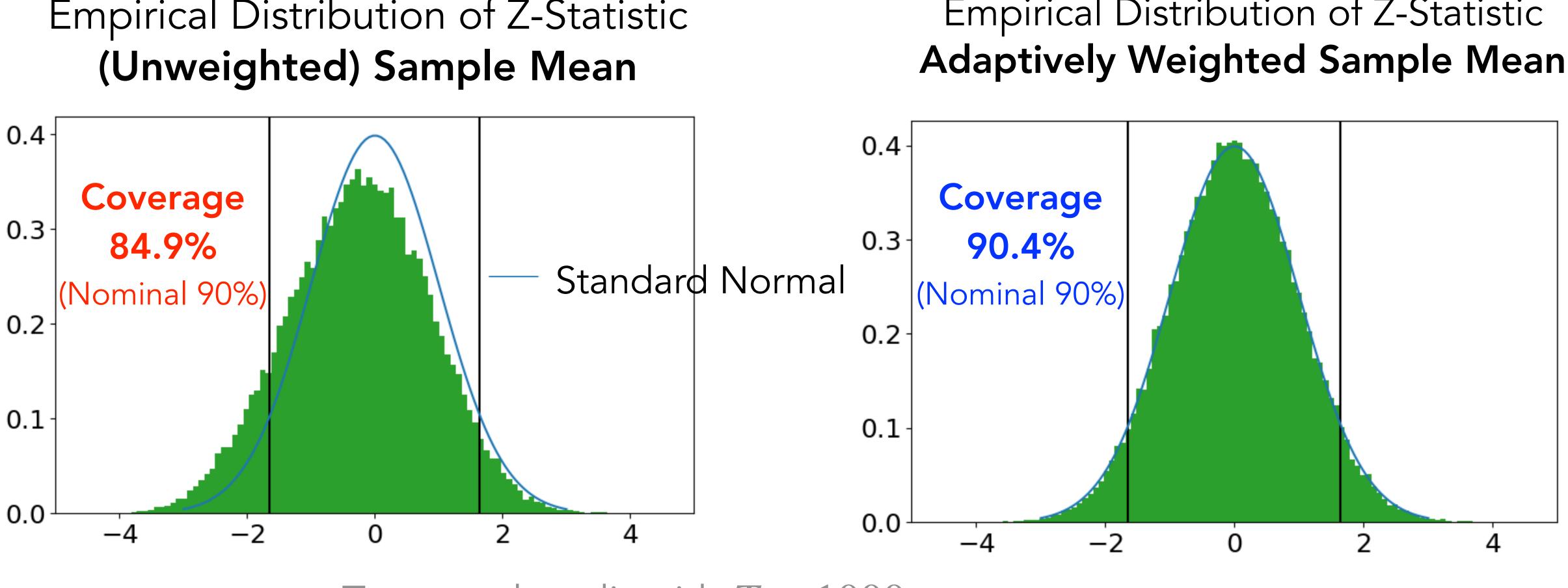
 $\frac{1}{r} \sum W_t \, \mathscr{C}_{\theta} (R_t, \, S_t, \, A_t)$ *t*=1

Examples

- Weighted least squares
- Weighted logistic regression
- Weighted maximum likelihood

Our Solution: Include "Adaptive" Weights

Empirical Distribution of Z-Statistic (Unweighted) Sample Mean



• Two-arm bandit with T = 1000• Thompson Sampling with standard normal priors

Empirical Distribution of Z-Statistic

Asymptotic Normality Result with Adaptive Weighting

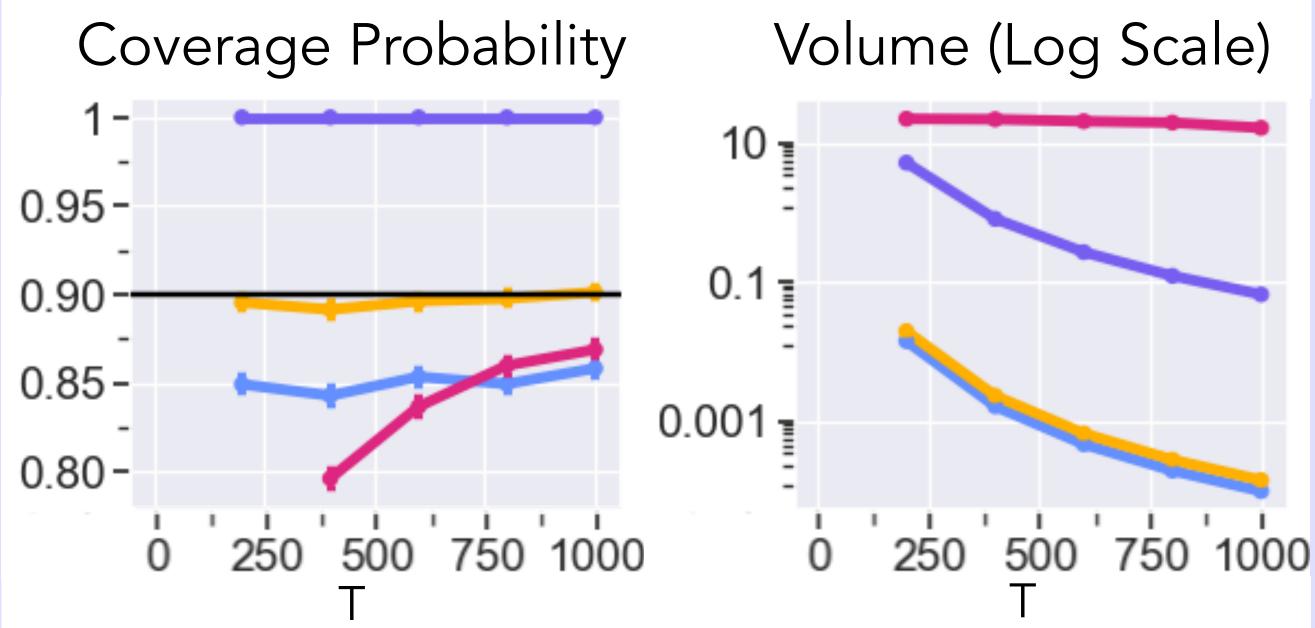
 $\left\{ \frac{1}{T} \sum_{t=1}^{T} W_t \, \ddot{\mathcal{E}}_{\hat{\theta}} \left(R_t, \, S_t, \, A_t \right) \right\} \sqrt{T} \left(\hat{\theta} - \theta^{\star} \right) \stackrel{D}{\rightsquigarrow} N(0, \, \Sigma)$

 θ^{\star} satisfies $\theta^{\star} \triangleq \operatorname{argmin} \mathbb{E} \left[\ell_{\theta}(R_t, S_t, A_t) \middle| S_t, A_t \right]$ for all S_t, A_t

 $\Sigma = \mathbb{E} \left[\dot{\mathscr{E}}_{\theta} \left(R_{t}, S_{t}, A_{t} \right) \left\{ \dot{\mathscr{E}}_{\theta} \left(R_{t}, S_{t}, A_{t} \right) \right\}^{\top} \right]$

Weighted Least Squares Confidence Regions for $\theta^{\star} = [\theta_0^{\star}, \theta_1^{\star}]$ where $\mathbb{E}\left[R_t | A_t, S_t\right] = S_t^{\mathsf{T}} \theta_0^{\star} + A_t S_t^{\mathsf{T}} \theta_1^{\star}$

90% Confidence Regions



- Least Squares (unweighted)
- W-Decorrelated [Deshpande et al., 2018]
- Self-Normalized Martingale Bound [Abbasi-Yadkori et al., 2011]
- Adaptively Weighted Least Squares

Similar performance for generalized linear models for Bernoulli and Poisson rewards

Adaptive weights are **not** used for

- Adjusting for heteroskedastic errors

Used to "stabilize" the variance of the estimator due to instability of the adaptive policy

Role of adaptive weights

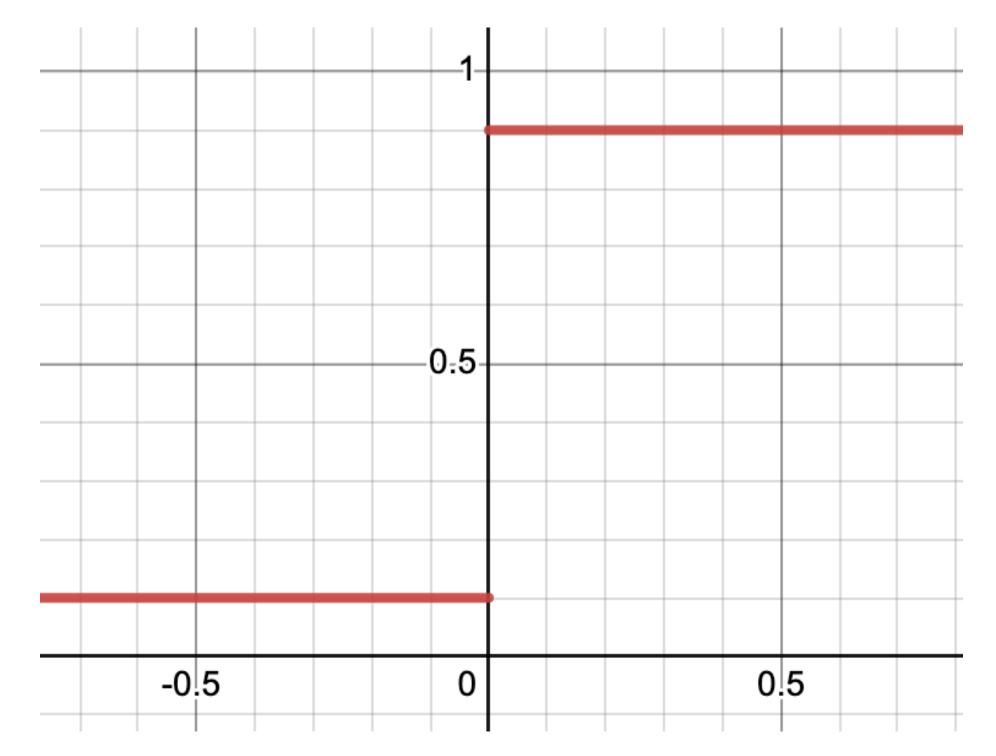
 $\hat{\theta} \triangleq \operatorname{argmin} \frac{1}{T} \sum_{t=1}^{T} W_t \, \ell_{\theta}(R_t, S_t, A_t)$

 $W_{t} = \frac{1}{\sqrt{\mathbb{P}(A_{t} \mid D_{1:t-1}, S_{t})}}$

• Defining the estimand (e.g. in causal inference, off-policy evaluation)

Instability of the Adaptive Policy

Limiting Action Selection Probabilities



Treatment Effect: $\mathbb{E}\left[R_t(1)\right] - \mathbb{E}\left[R_t(0)\right]$

Probability of Selecting $A_t = 1$

Other examples nonsmoothness problems:

- CI for test error of classifier
- Bootstrap
- Hodges estimator

- Common RL algorithms can form policies that are unstable
- Including adaptive weights
 - "Stabilizes" the variance of estimators
 - Ensures asymptotic normality
- Limitation
 - Approach not applicable to longitudinal data settings (multiple decision times per user)

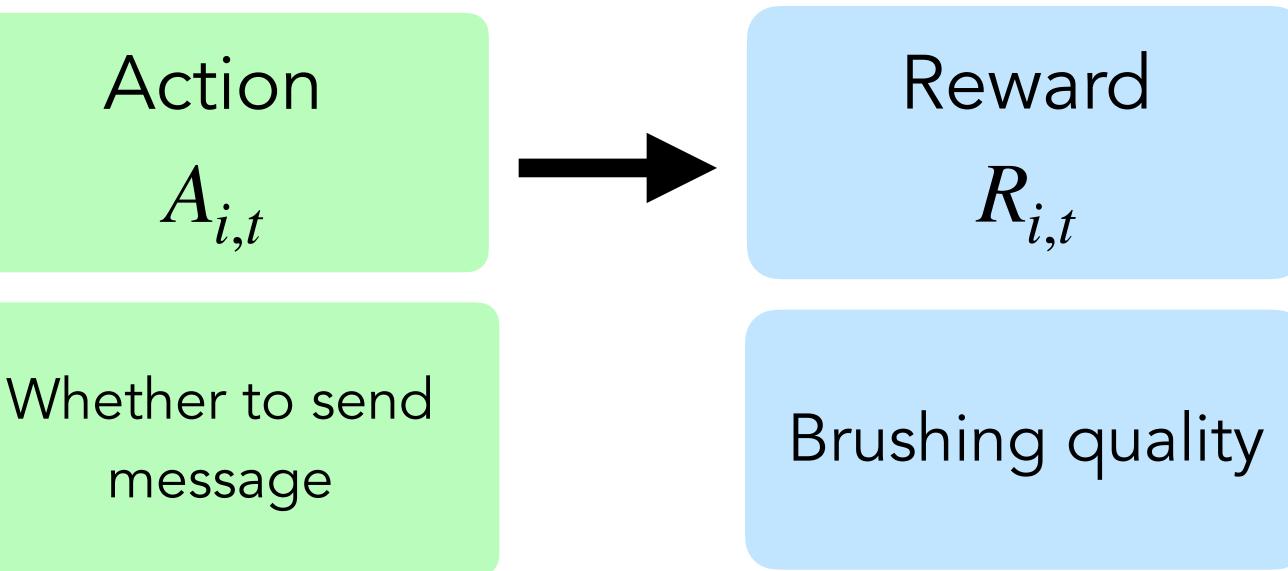
Summary

Part 2: Longitudinal Data Setting

Time of day, Previous brushing, App engagement

Oralytics Setting

Make a series of decisions for each user $i \in [1:N]$





Oralytics Study Overview

- Total Decision Times: 10 weeks with two decision times per day $(T = 140 = 10 \cdot 7 \cdot 2)$
- Data Collected After Study: For each user $i \in [1:N]$,

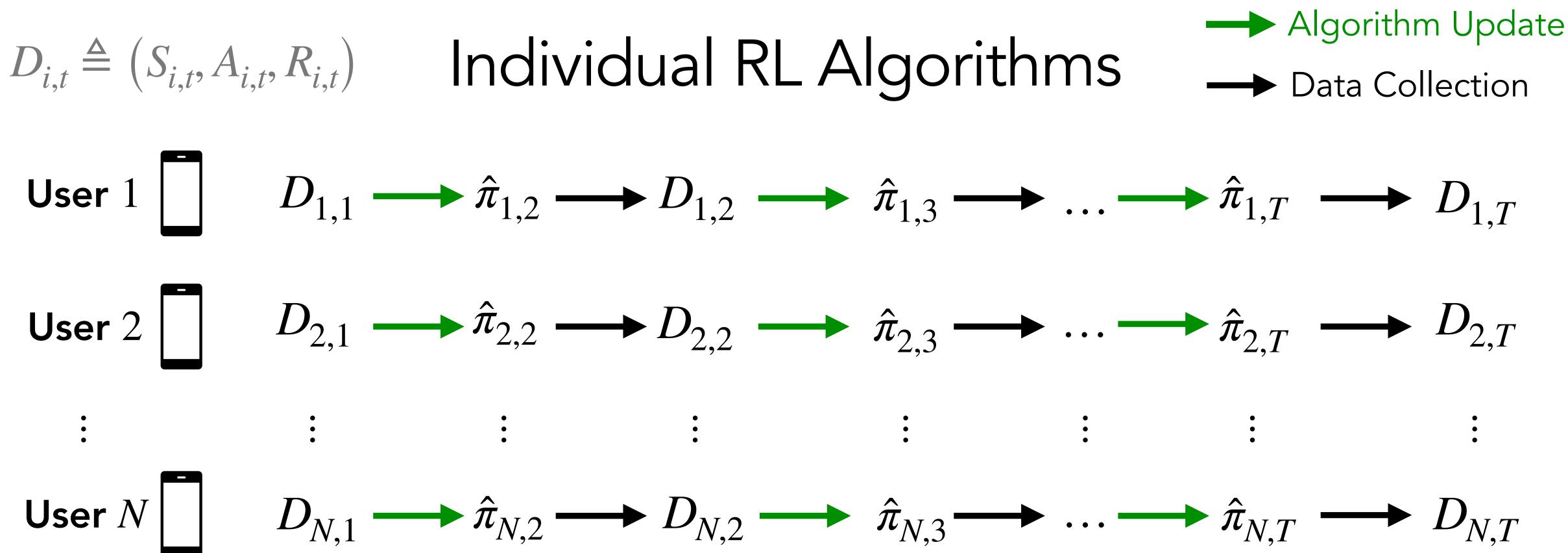
$$\underbrace{\begin{pmatrix} S_{i,1}, A_{i,1}, R_{i,1} \end{pmatrix}}_{D_{i,1}} \qquad \underbrace{\begin{pmatrix} S_{i,2}, A_{i,2}, R_{i,2} \end{pmatrix}}_{D_{i,2}}$$

• • •

• Study Population: $N \approx 70$ patients from dental clinics in Los Angeles

 $(S_{i,T}, A_{i,T}, R_{i,T})$

 $D_{i,T}$

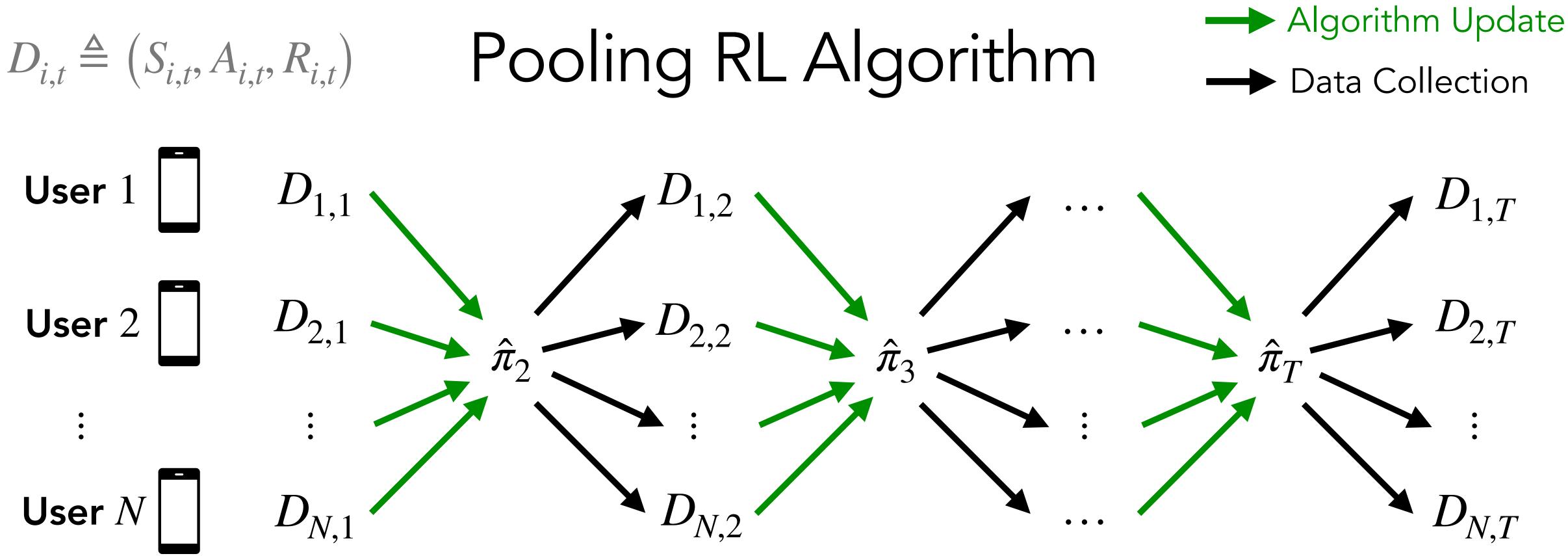


Dependence Within a User

User states/rewards can be dependent over time

Limitations

Rewards are noisy and few decision times per user \rightarrow slow learning



Dependence Within a User

User states/rewards can be dependent over time

Dependence Between Users Due to use of pooling algorithm

Inferential Goal

Parameters in an outcome model

- Linear Model: $\mathbb{E}\left[R_{i,t} | D_{i,1:t-1}, S_{i,t}, A_{i,t}\right] = \phi\left(D_{i,t}\right)$
- Logistic Model:
 - $\mathbb{E}\left[R_{i,t} \mid D_{i,1:t-1}, S_{i,t}, A_{i,t}\right] = \left[1 + \exp(1 + \exp(1 \theta_{i,t}))\right]$

General Case $\theta^{\star} \triangleq \operatorname{argmin}_{\theta} \mathbb{E}^{\star} \left| \ell_{\theta^{\star}} (D_{i,1:T}) \right|$

Treatment effect parameter θ_1^{\star}

$$(i,1:t-1,S_{i,t})^{\top}\theta_0^{\star} + A_{i,t}S_{i,t}^{\top}\theta_1^{\star}$$

$$\exp\left\{\phi\left(D_{i,1:t-1},S_{i,t}\right)^{\mathsf{T}}\theta_{0}^{\star}+A_{i,t}S_{i,t}^{\mathsf{T}}\theta_{1}^{\star}\right\}\right]^{-1}$$

Typical Approach to Forming Estimators

Estimator $\hat{\theta}$ minimizes empirical loss:

- Sample mean
- Least squares

 $\hat{\theta} \triangleq \operatorname{argmin} \frac{1}{T} \sum_{t=1}^{T} \ell_{\theta}(D_{i,1:T})$

Examples

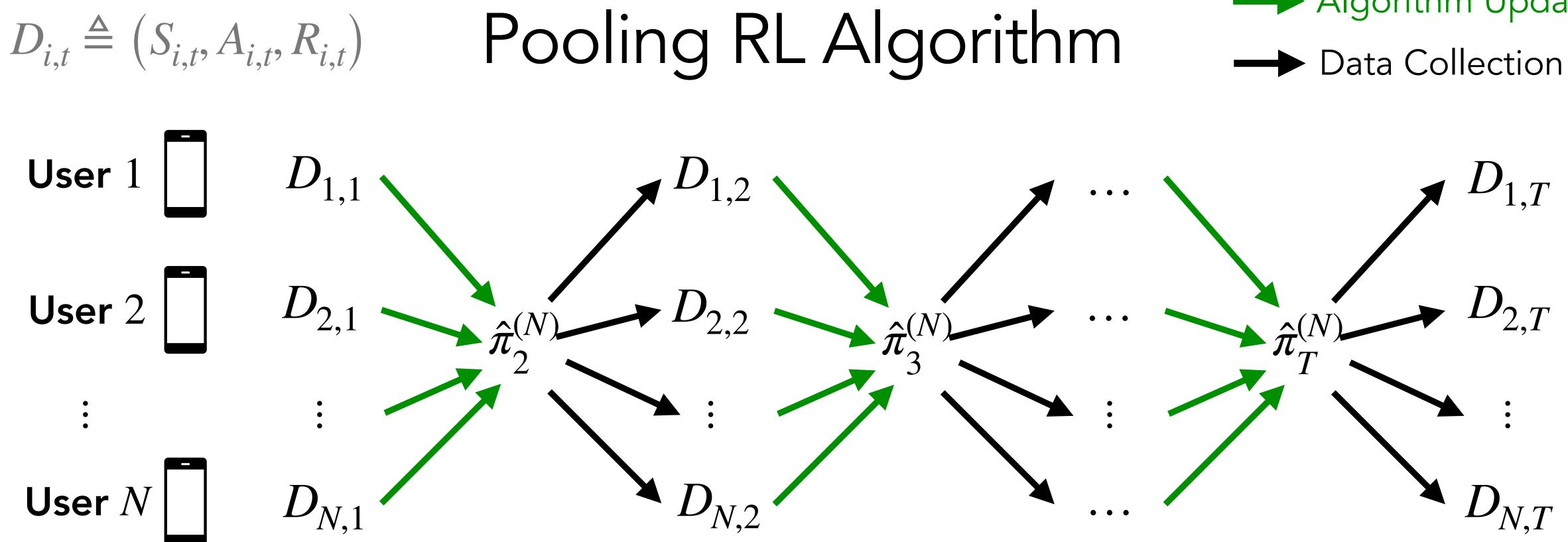
- Logistic regression
- Maximum likelihood

Typical Approach to Forming Estimators

Estimator $\hat{\theta}$ minimizes empirical loss:

- Under certain assumptions on the adaptive policies
 Standard estimators are asymptotically normal
 However, common variance estimators inaccurate

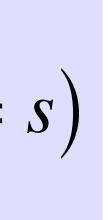
 $\hat{\theta} \triangleq \operatorname{argmin} \frac{1}{T} \sum_{t=1}^{T} \mathscr{C}_{\theta}(D_{i,1:T})$



For each $\hat{\pi}_t^{(N)}$ as $N \to \infty$, $\hat{\pi}_{t}^{(N)} \rightarrow \pi_{t}^{\star}$ (limiting policy)

Algorithm Update

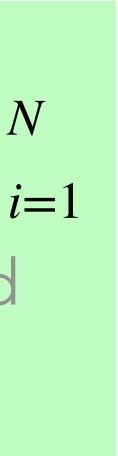
$$\hat{\pi}_{t}^{(N)}(s) = \mathbb{P}\left(A_{i,t} = 1 \mid \left\{D_{i,1:t-1}\right\}_{i=1}^{N}, S_{i,t} = 1\right\}_{i=1}^{N}$$



- **Policy Class:** $\{\pi(\cdot;\beta)\}_{\beta\in\mathbb{R}^d}$
 - Estimated policy: $\hat{\pi}_t^{(N)}(s) \triangleq \pi(s; \hat{\beta}_{t-1}^{(N)})$
 - Limiting policy: $\pi_t^{\star}(s) \triangleq \pi(s; \beta_{t-1}^{\star})$

Parametric Policy Classes

Form $\hat{\beta}_{t-1}^{(N)}$ with $\{D_{i,1:t-1}\}_{i=1}^{N}$ (e.g. estimate of reward model parameters)



Policy Class: $\{\pi(\cdot;\beta)\}_{\beta\in\mathbb{R}^d}$

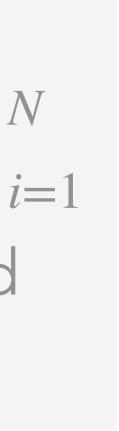
- Estimated policy: $\hat{\pi}_{t}^{(N)}(s) \triangleq \pi(s; \hat{\beta}_{t-1}^{(N)})$
- Limiting policy: $\pi_t^{\star}(s) \triangleq \pi(s; \beta_{t-1}^{\star})$

Key Assumptions 1. Convergence of $\hat{\beta}_t^{(N)} \xrightarrow{P} \beta_t^{\star}$ (for each *t*)

Parametric Policy Classes

Form $\hat{\beta}_{t-1}^{(N)}$ with $\{D_{i,1:t-1}\}_{i=1}^{N}$ (e.g. estimate of reward model parameters)

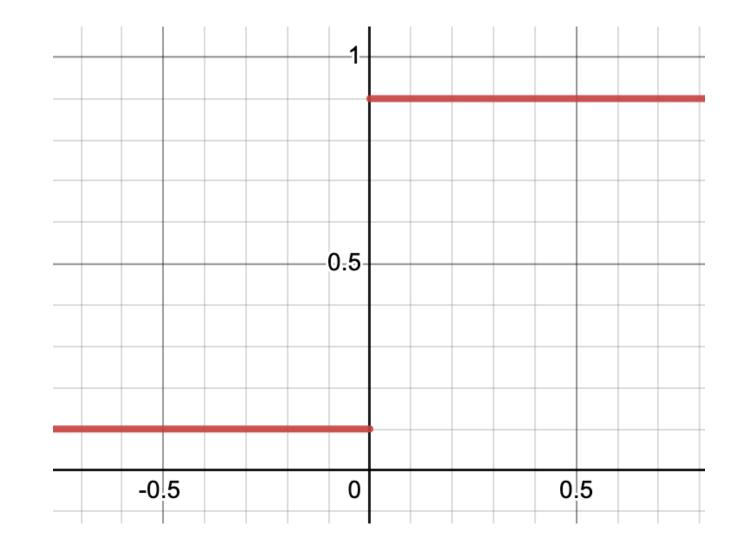
2. Policy class $\{\pi(\cdot;\beta)\}_{\beta\in\mathbb{R}^d}$ is smooth in β (Lipschitz)



What probability should the limiting policy send a message?

Maximize Rewards $\pi^{\star}(s) = \mathbf{1}\{\text{Treatment Effect}(s) > 0\}$

Probability of Sending a Message

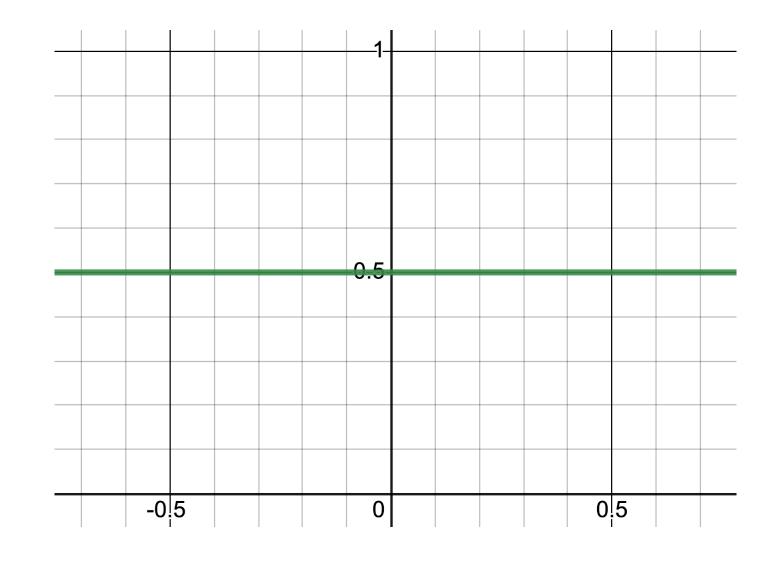


Treatment Effect in State s

Accurately Infer Treatment Effects

$\pi^{\star}(s) = 0.5$

Probability of Sending a Message

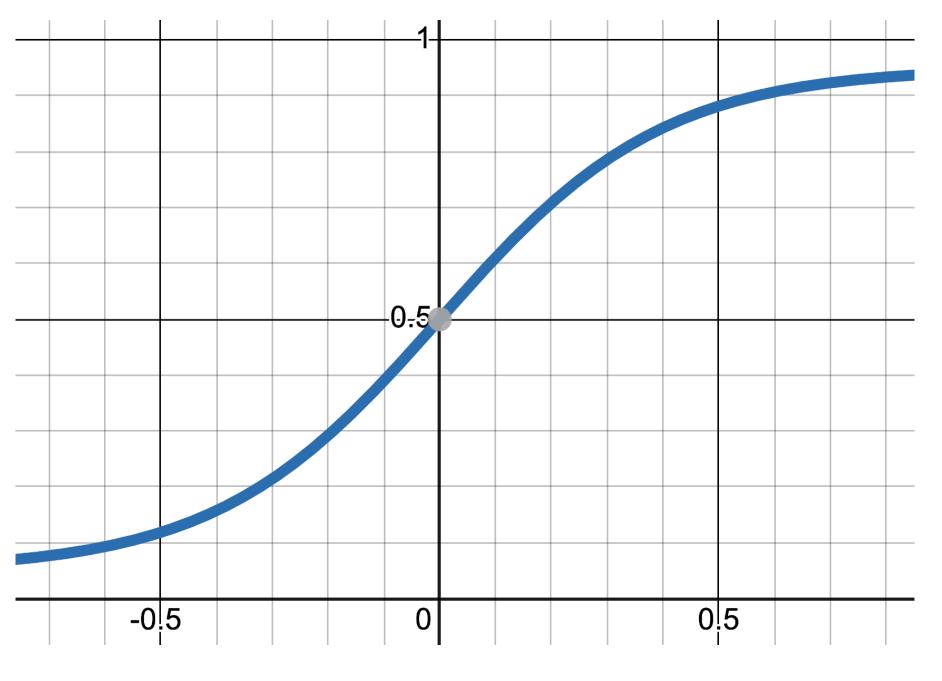


Treatment Effect in State s

What probability should the limiting policy send a message?

Balance Maximizing Rewards and Inferring Treatment Effects $\pi^{\star}(s) = \text{Softmax}(\text{Treatment Effect}(s))$

Probability of Sending a Message



No longer have issue of unstable learned policies from taking a "hardmax"

Treatment Effect in State s

Inference Challenges

(1) Dependencies both within and between users (2) Error of $\hat{\theta}$ implicitly depends on how the algorithm forms and updates policies $\hat{\pi}_{t}$

Coverage of 95% Confidence Intervals for Treatment Effect

Variance Estimators Â

Standard Sandwich

"Adaptive" Sandwich

N = 50	<i>N</i> = 100
75.8%	77.6%
95.4%	96.5%

Adaptive Sandwich Variance (Result Summary) For longitudinal data collected by a particular class of pooled RL algorithms, under regularity conditions,

 $\sqrt{N}(\hat{\theta} - \theta^{\star}) \xrightarrow{D} \mathcal{N}(0, \Sigma)$

Zhang, Janson, & Murphy, 2023 Under submission

Typical Variance (no RL)

Adaptive Sandwich Variance (Result Summary) For longitudinal data collected by a particular class of pooled RL algorithms, under regularity conditions,

$\sqrt{N(\hat{\theta} - \theta^{\star})} \xrightarrow{D} \mathcal{N}(0, \Sigma)$

Zhang, Janson, & Murphy, 2023 Under submission

Typical Variance (no RL)

 $\sqrt{N}(\hat{\theta} - \theta^{\star}) \xrightarrow{D} \mathcal{N}(0, \Sigma^{\text{adapt}})$

Correction in Variance Due to Pooled RL Algorithm

Adaptive Sandwich Variance (Result Summary) For longitudinal data collected by a particular class of pooled RL algorithms, under regularity conditions,

$\sqrt{N(\hat{\theta} - \theta^{\star})} \xrightarrow{D} \mathcal{N}(0, \Sigma)$

Zhang, Janson, & Murphy, 2023 Under submission

Typical Variance (no RL)

 $\sqrt{N}(\hat{\theta} - \theta^{\star}) \xrightarrow{D} \mathcal{N}(0, \Sigma^{\text{adapt}})$

Correction in Variance Due to Pooled RL Algorithm

Impact of Adaptive Sandwich Variance Approach

Enables the use of pooling RL algorithms in digital intervention studies

Oralytics: Oral Health Coaching

MiWaves:

Curbing Adolescent Marijuana Use

Oralytics: Designed RL Algorithm with Interdisciplinary Team

Algorithms 2022 (Oral Presentation at RLDM 2022) Trella, **Zhang**, Nahum-Shani, Shetty, Doshi-Velez. & Murphy

Innovative Applications of AI, 2023 Trella, **Zhang**, Nahum-Shani, Shetty, Doshi-Velez, & Murphy

Our RL algorithm is currently in the field!

- Pre-Implementation Guidelines for Online RL for Digital Interventions
- Reward Design for an Online RL Algorithm to Support Oral Self-Care

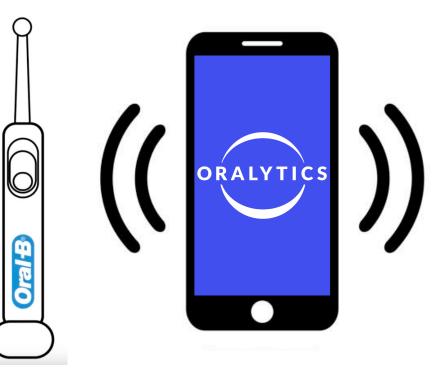
Conclusion

Summary

Part 1: Contextual Bandit Setting

- Standard estimators asymptotically non-normal due to instability in adaptive policies
- Adaptively weighted estimators preserve asymptotic normality

Part 2: Longitudinal Data Setting



- Using data from "smooth" adaptive policies, standard estimators are still asymptotically normal
- Need to adjust variance estimator to account for adaptive sampling

Future Work / Open Questions

Next Steps / Direct Extensions

- Software Package
- Incremental recruitment

Related Open Questions

- Different asymptotic regimes
- Randomization based inference
- Incorporating observational data and/or predictions from high dimensional ML models

Other forms of pooling: limited resource allocation, partial pooling

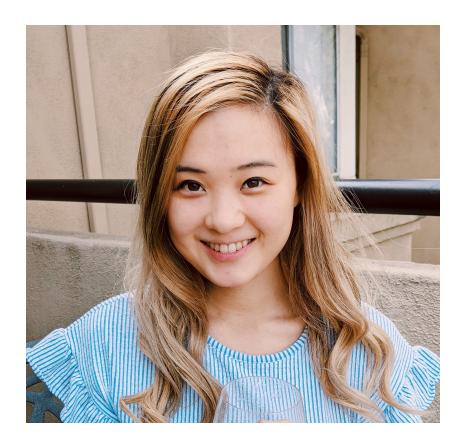
Acknowledgements

Lucas Janson

Advisors

Susan Murphy

Collaborators!



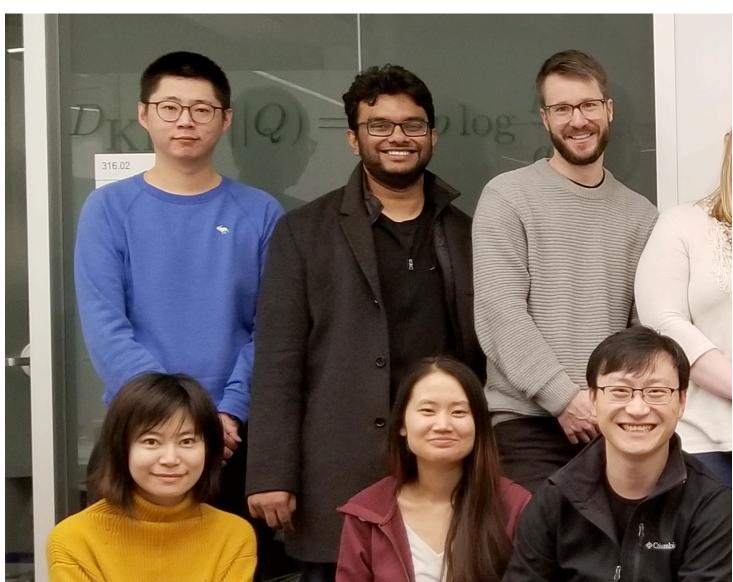
Anna Trella

Inbal Nahum-Shani

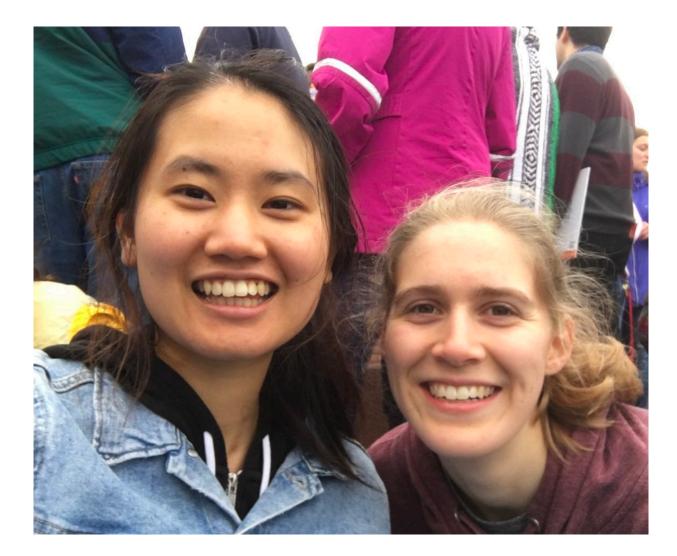
Vivek Shetty

Raaz Dwivedi

Finale Doshi-Velez



Friends





Family

Backup Slides

Oralytics: The State of Dental Health

- 5-10% of healthcare budgets in industrialized countries are spent on treating dental cavities
- Nearly one-fifth of U.S. adults 65 or older have lost all their teeth

Oral diseases are largely preventable through regular brushing and flossing

Adaptive Sandwich Variance

 $\sqrt{n}(\hat{\theta}^{(n)} - \theta^{\star}) \xrightarrow{D} \mathcal{N}(0, \ddot{L}^{-1}\Sigma^{\text{adapt}} \ddot{L}^{-1})$

 $\Sigma^{\text{adapt}} = \mathbb{E}_{\pi^{\star}} \left[\left\{ \dot{\mathscr{E}} \left(D_{i,1:T}; \theta^{\star} \right) + \dot{L}^{-1} \sum_{i=1}^{T-1} f_t \left(D_{i,1:t}; \beta_t^{\star} \right) \right\}^{\otimes 2} \right]$

 f_t given in paper: Statistical Inference After Adaptive Sampling for Longitudinal Data (https://arxiv.org/abs/2202.07098)

Correction in Variance Due to Pooled RL Algorithm