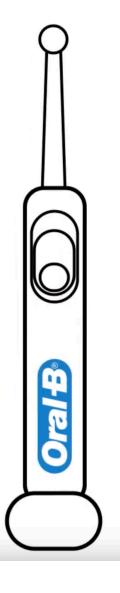
Oralytics: A Mobile Health Study to Improve Oral Health Behaviors Kelly W. Zhang, Anna Trella, Susan Murphy

Harvard John A. Paulson School of Engineering and Applied Sciences



November 10, 2021

Statistical Reinforcement Learning Lab

- Mobile Health Clinical Trials
 - HeartSteps
 - Sense2Stop
 - Oralytics (focus of this talk!)

Statistical Reinforcement Learning Lab

- Mobile Health Clinical Trials
 - HeartSteps
 - Sense2Stop
 - Oralytics (focus of this talk!)
- **Developing Learning Algorithms for Personalization**
 - Bandit / Reinforcement Learning

Statistical Reinforcement Learning Lab

- Mobile Health Clinical Trials
 - HeartSteps
 - Sense2Stop
 - Oralytics (focus of this talk!)
- **Developing Learning Algorithms for Personalization**
 - Bandit / Reinforcement Learning
- Methods for Statistical Analysis

About this talk...

- Oralytics is a work in progress!
 - the field spring 2022
 - We welcome and value your feedback!!

• We are currently designing the algorithm for the trial which will go in

About this talk...

- Oralytics is a work in progress!
 - the field spring 2022
 - We welcome and value your feedback!!
- Goals of this talk
 - Introduce you to using RL / personalizing algorithms in mobile health studies through our Oralytics study
 - Describe and get feedback on the challenges we're facing

• We are currently designing the algorithm for the trial which will go in

Outline

- **1. Introduction to Oralytics**
- 2. Just-In-Time Adaptive Interventions and Trial Overview
- Algorithm

3. Design of Personalization / Reinforcement Learning

Oralytics Study Collaborators (big team)!

- Dentists
 - Led by Vivek Shetty at UCLA
- **Behavioral Scientists**
 - Led by Inbal Nahum-Shani at UMichigan
- **Personalization Algorithm (our team)**
- Signal Processing Team
 - Led by Vwani Roychowhury at UCLA \bullet
- **App Developers**
 - Led by Cody Diefenthaler

The State of Dental Health

- \$108 billon spent annually on dental services in US (2011 CDC report)
 - 95% spent on treating consequences of oral diseases
 - <5% spend on oral health promotion and disease prevention</p>

The State of Dental Health

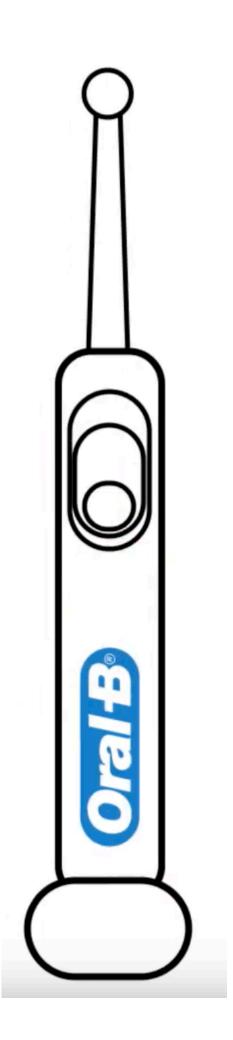
- \$108 billon spent annually on dental services in US (2011 CDC report)
 - 95% spent on treating consequences of oral diseases
 - <5% spend on oral health promotion and disease prevention
- Dental disease linked to poor Oral Hygiene Behaviors (2009 UK report)
 - 33% of men brushed only once a day
 - 59% of women regularly skipped brushing at bedtime

The State of Dental Health

- \$108 billon spent annually on dental services in US (2011 CDC report)
 - 95% spent on treating consequences of oral diseases
 - <5% spend on oral health promotion and disease prevention
- Dental disease linked to poor Oral Hygiene Behaviors (2009 UK report)
 - 33% of men brushed only once a day
 - 59% of women regularly skipped brushing at bedtime
- Dental disease burden falls disproportionately on vulnerable and underserved populations

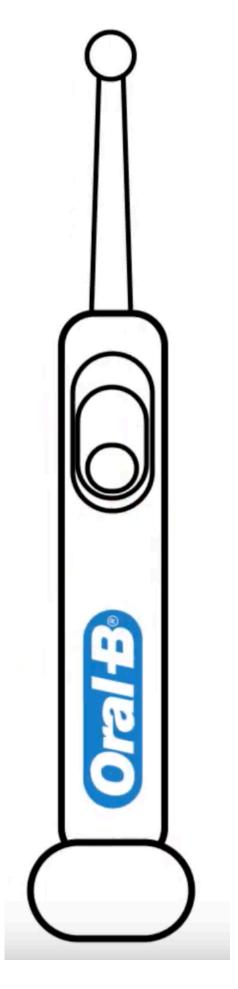
Oralytics Study Overview

 Mobile health app to improve user's oral health behaviors



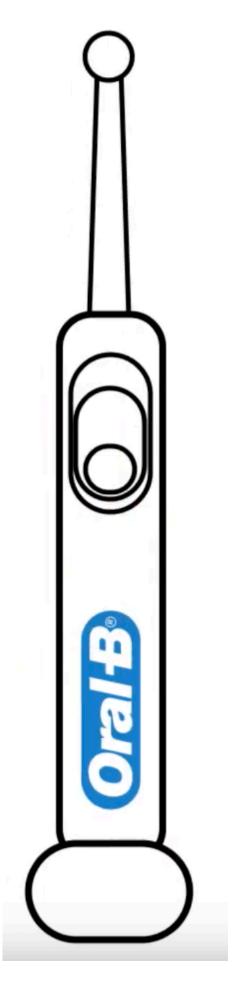
Oralytics Study Overview

- Mobile health app to improve user's oral health behaviors
- Digital Oral Health Intervention: "push" messages to encourage toothbrushing



Oralytics Study Overview

- Mobile health app to improve user's oral health behaviors
- Digital Oral Health Intervention: "push" messages to encourage toothbrushing
- Sensor data includes mobile phone and bluetooth enabled toothbrush



Are you interested in a healthy smile and preventing dental disease?

UCLA scientists are refining technologies that will provide a digital personal tracker and trainer to help you protect and improve your oral health.

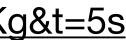
Am I Eligible?

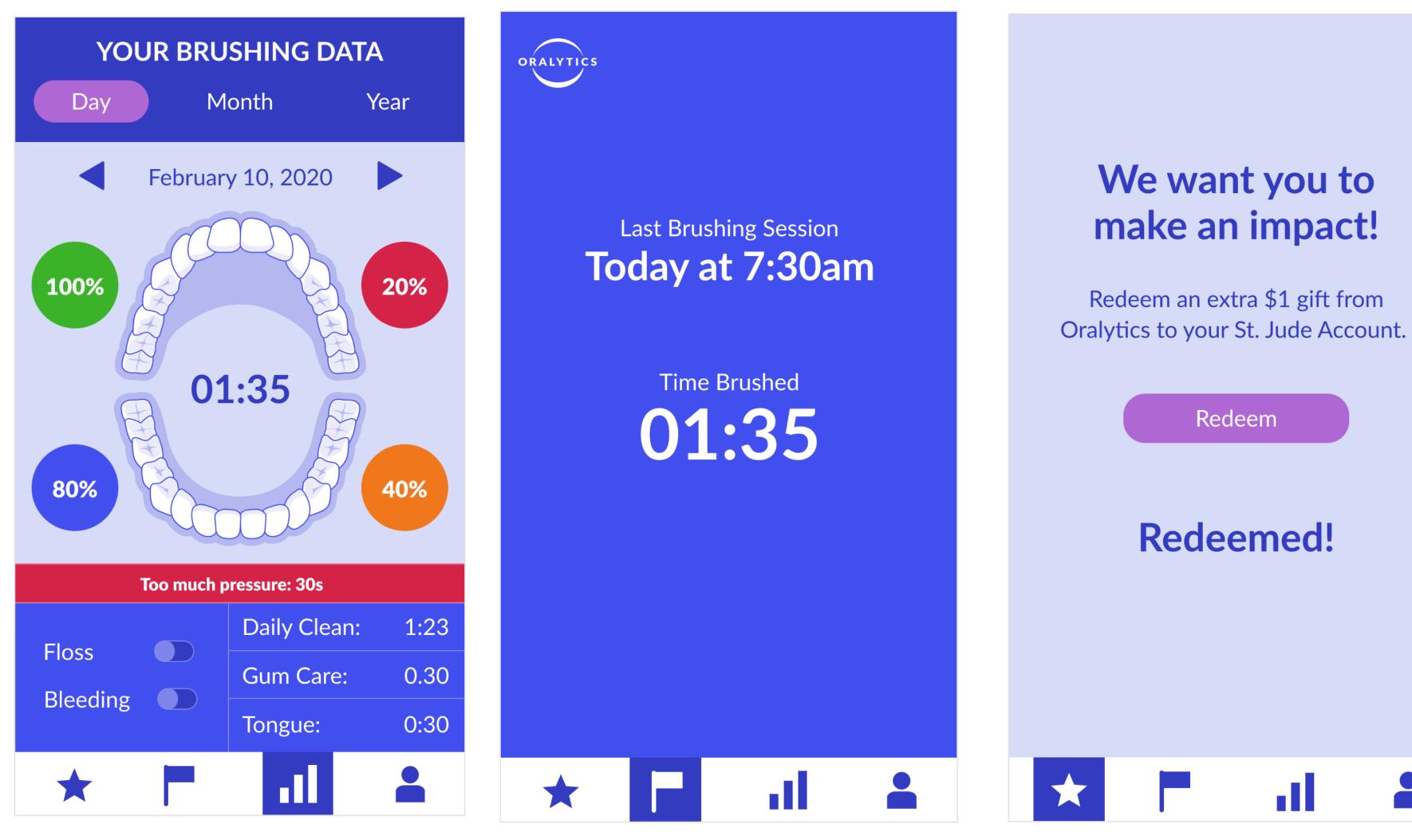
Information

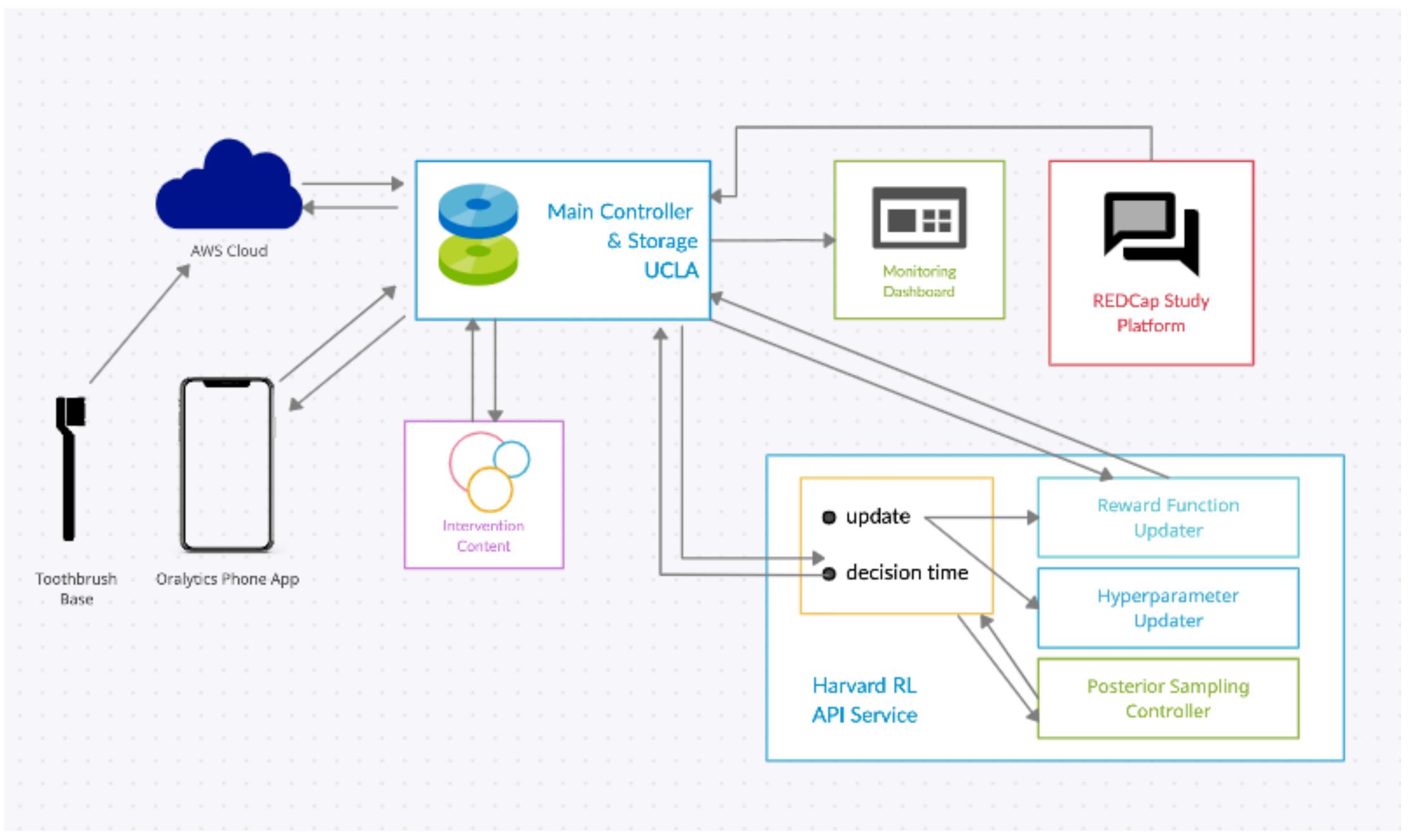
Study: Oral Health Behaviors

Length: 4 months

Link to video: <u>https://www.youtube.com/watch?v=XpI4O0vHYKg&t=5s</u> 15







Outline

- 1. Introduction to Oralytics
- 2. Just-In-Time Adaptive Interventions and Trial **Overview**
- Algorithm

3. Design of Personalization / Reinforcement Learning

Interventions that are delivered whenever and wherever needed

- Motivation for JITAIs

(1) Individuals may need support when it is difficult or expensive to provide otherwise

Interventions that are delivered whenever and wherever needed

- Interventions that are delivered whenever and wherever needed
- Motivation for JITAIs

expensive to provide otherwise

- (1) Individuals may need support when it is difficult or
- (2) Individuals are not always aware of when they need support

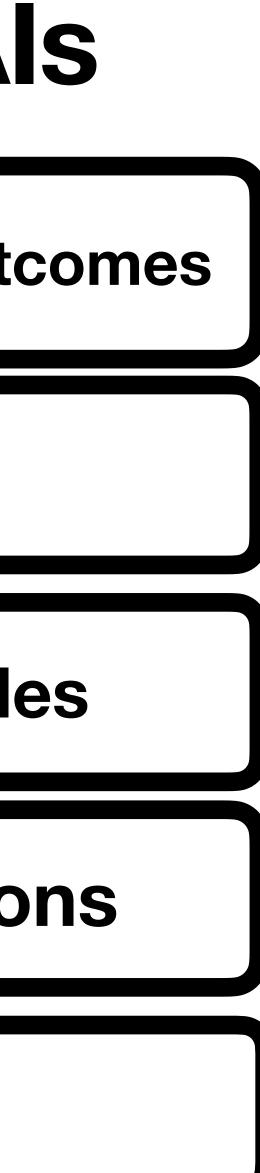
- Interventions that are delivered whenever and wherever needed
- Motivation for JITAIs
 - (1) Individuals may need support when it is difficult or expensive to provide otherwise
 - (2) Individuals are not always aware of when they need support
 - (3) Intervention options may have negative side effects (burden, habituation)

Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions



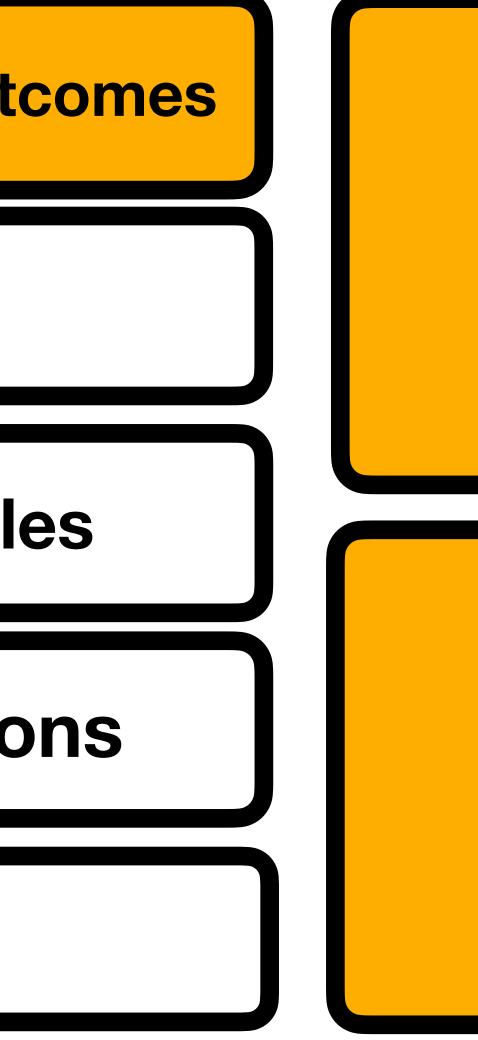
Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions

Decision Rules



Distal Outcome: User's oral health

Proximal (Near-Time) Outcome: Brushing time at next brushing window

Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions

Decision Rules

Every Morning Before Brush Time

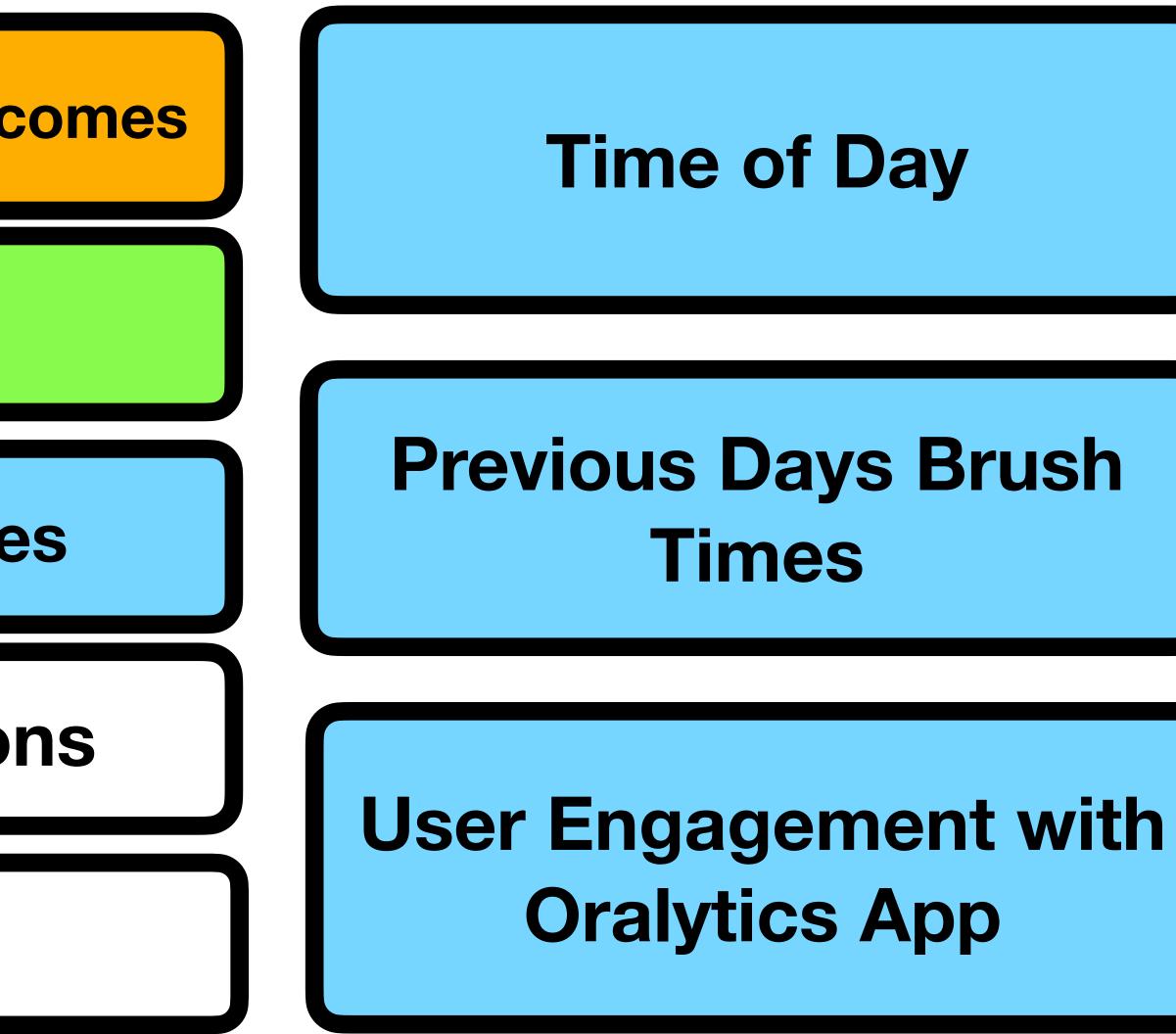
Every Evening Before Brush Time

Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions

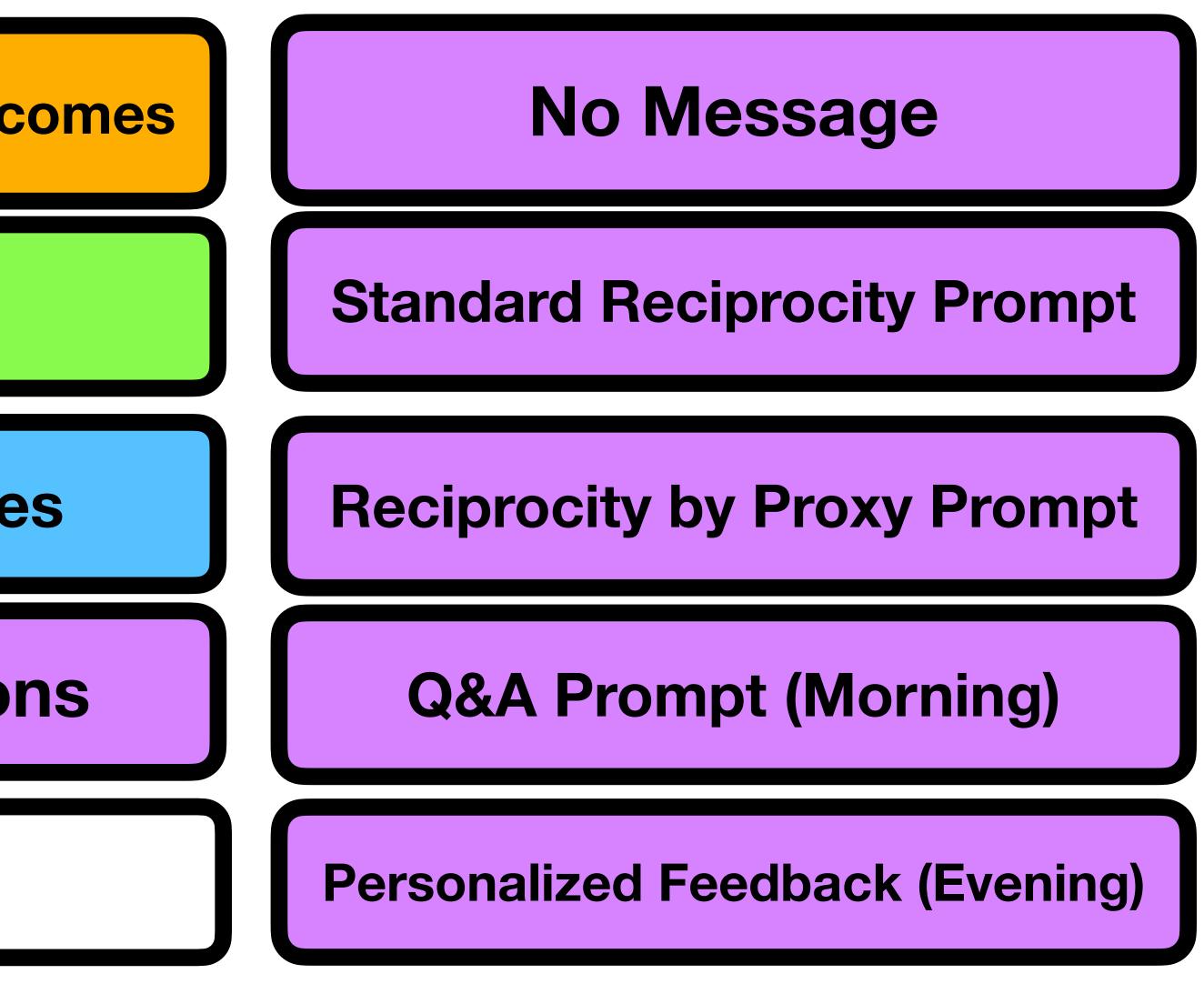


Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions

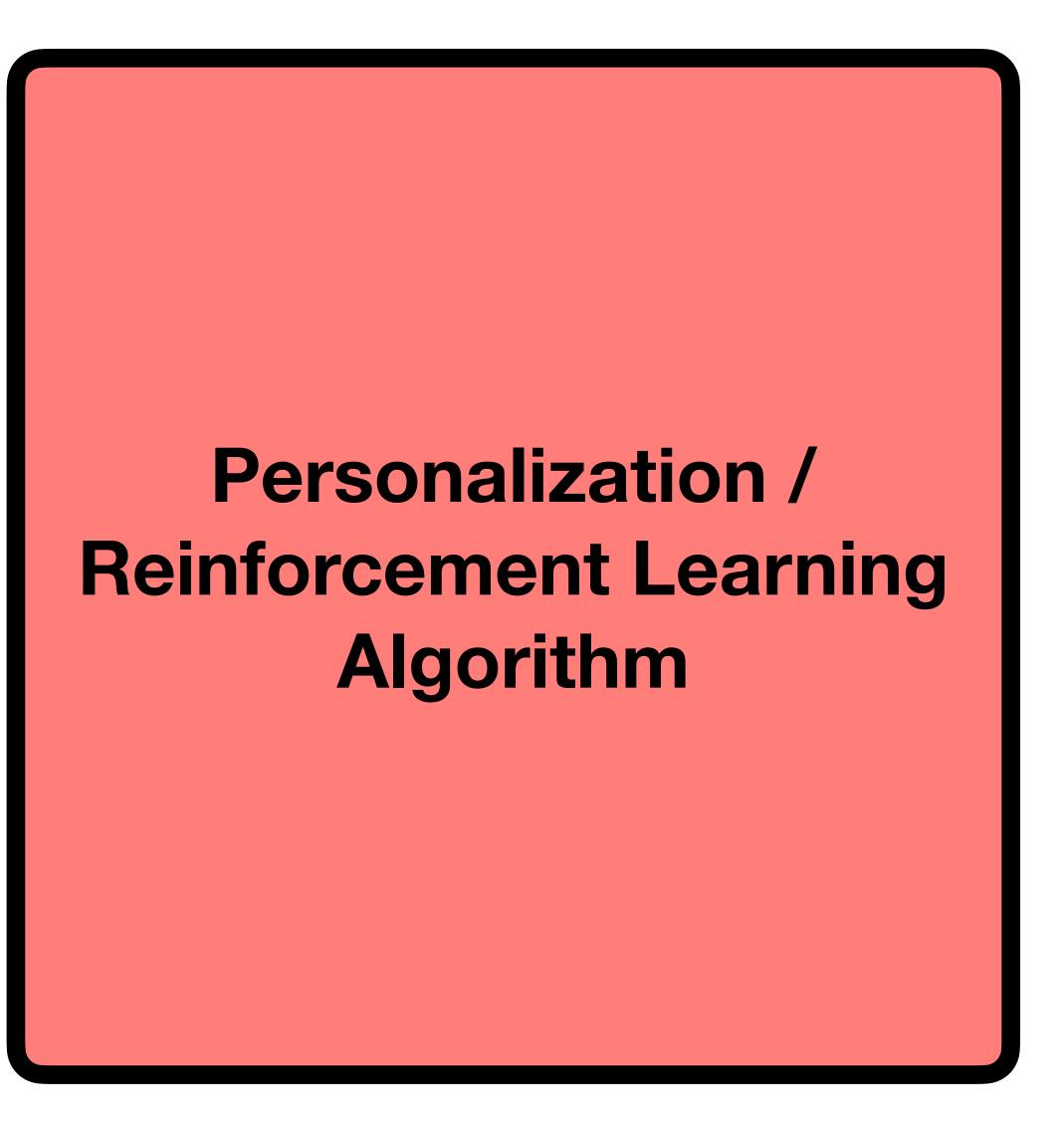


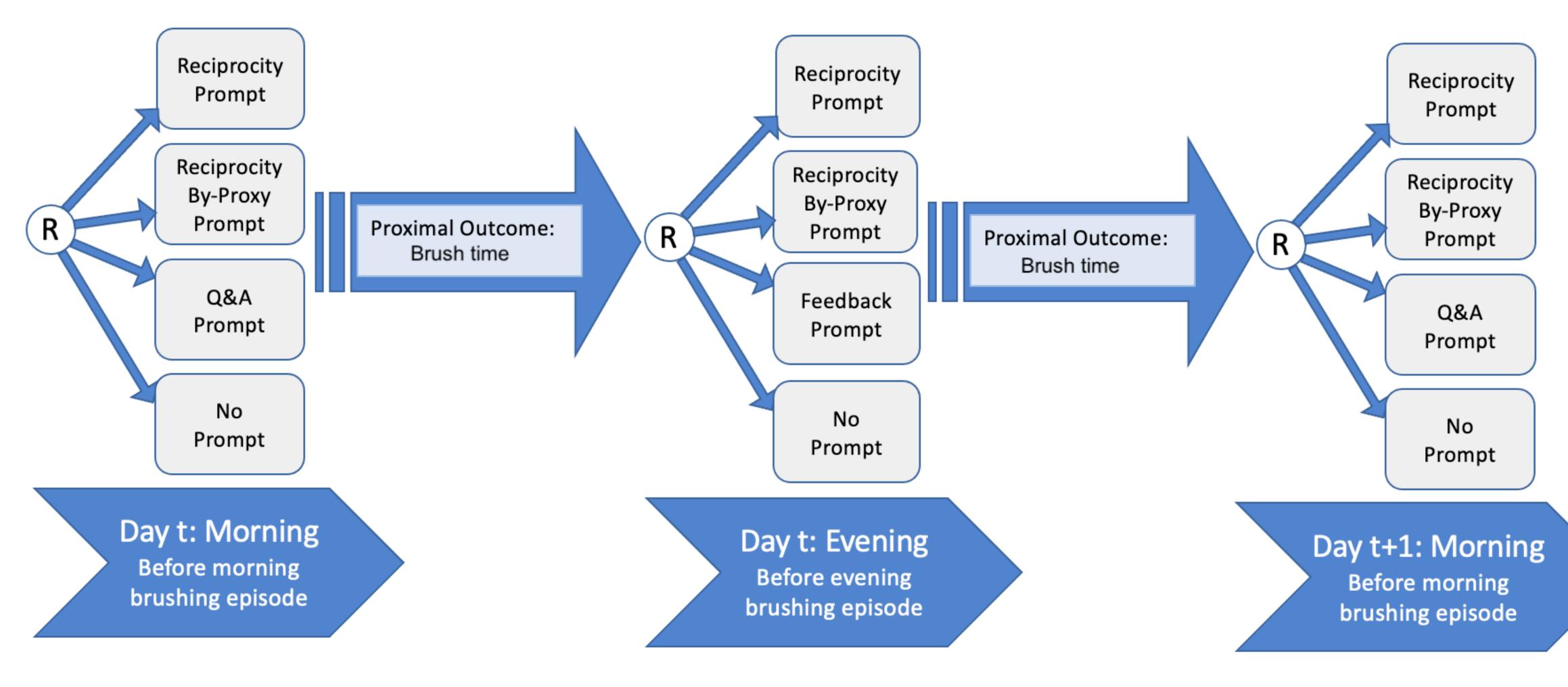
Proximal (Near-Time) and Distal Outcomes

Decision Times

Tailoring / Contextual Variables

Intervention Options / Actions





Micro-Randomizations: every day over 10 weeks, day t = 1, ..., 70

Overview of Study

- Micro-Randomized Trial (MRT)
 - 10 week trial with ~75 users
 - Designed to (1) inform design of a JITAI for future use and (2) personalize message delivery (learning for each user)

Overview of Study

- Micro-Randomized Trial (MRT)
 - 10 week trial with ~75 users
 - Designed to (1) inform design of a JITAI for future use and (2) personalize message delivery (learning for each user)

Standard Clinical Trial will be run after the MRT Randomize between usual care versus the Digital Oral Health

- Intervention JITAI
- Los Angeles
- Evaluate effect on (1) Dental plaque (2) Gum inflammation

Participants recruited from two large "safety net" dental clinical in

Outline

- 1. Introduction to Oralytics
- 2. Just-In-Time Adaptive Interventions and Trial Overview
- **3. Design of Personalization / Reinforcement** Learning Algorithm

Why use an RL algorithm in the MRT?

so far

Biases micro-randomization probabilities based on the data collected

Why use an RL algorithm in the MRT?

- so far
- - More likely for the intervention to be effective on average

Biases micro-randomization probabilities based on the data collected

 Increase probability of sending messages in contexts for which the data indicates sending a message will increase user brushing

Why use an RL algorithm in the MRT?

- so far
- - More likely for the intervention to be effective on average
- indicates messages will be less effective
 - Avoid burdening / annoying the user

Biases micro-randomization probabilities based on the data collected

 Increase probability of sending messages in contexts for which the data indicates sending a message will increase user brushing

Decrease the probability of sending messages in contexts the data

Approach to Designing the RL Algorithm

- **Develop a simulation environment using**
 - Available prior data
 - Domain expertise

Simulation Environment Generates contexts and rewards under each action Heterogenous users

Approach to Designing the RL Algorithm

- Develop a simulation environment using
 - Available prior data
 - Domain expertise
- Evaluate RL Algorithms on Simulation **Environment**
 - Select algorithm that performs well across simulation variants

Simulation Environment Generates contexts and rewards under each action Heterogenous users

RL Algorithm Uses data accrued so far to form action selection probabilities for the current context

- in real world settings
 - 32 participants for 1 month

ROBAS paper: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380983/</u>

- in real world settings
 - 32 participants for 1 month
- Used a similar sensor suite as will be used in our MRT

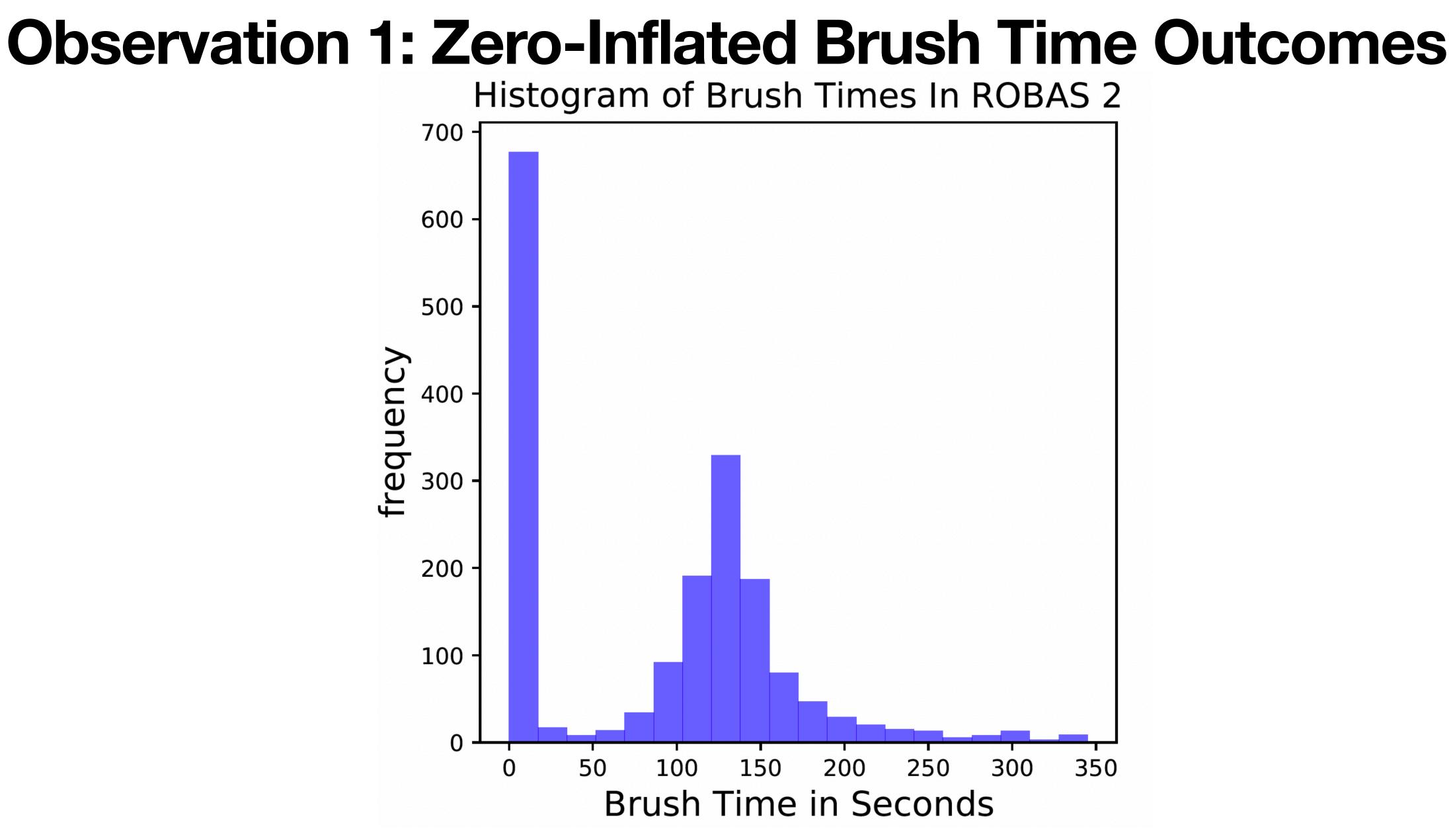
ROBAS paper: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380983/</u>

- in real world settings
 - 32 participants for 1 month
- Used a similar sensor suite as will be used in our MRT
- Differences from our MRT
 - No intervention
 - App in ROBAS study only used for data collection

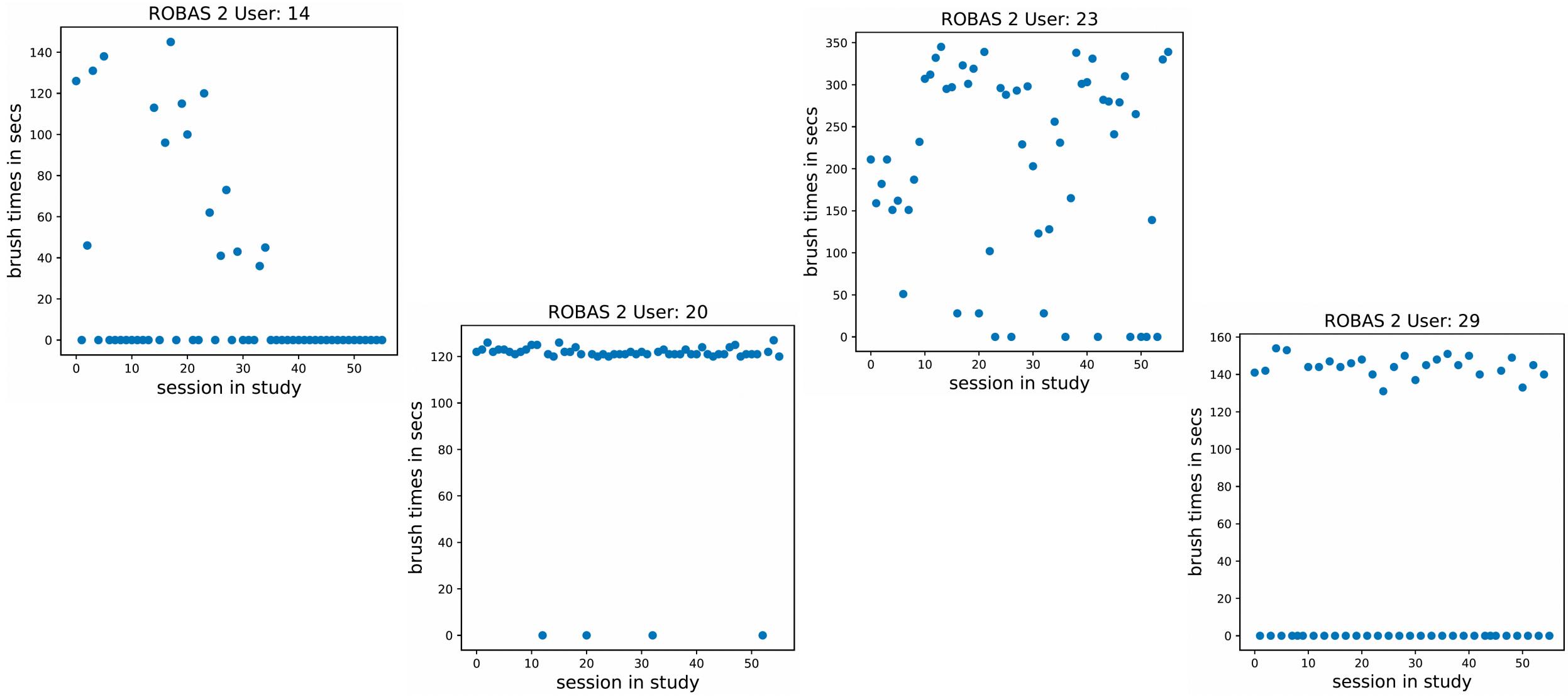
ROBAS paper: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380983/</u>

- in real world settings
 - 32 participants for 1 month
- Used a similar sensor suite as will be used in our MRT
- Differences from our MRT
 - No intervention
 - App in ROBAS study only used for data collection
- Use data to model outcomes under no intervention

ROBAS paper: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380983/</u>



Observation 2: User Heterogeneity



Modeling Zero-Inflated Outcome

Use ROBAS data to model brush time in seconds under no message

Modeling Zero-Inflated Outcome

- Use ROBAS data to model brush time in seconds under no message
- Zero-Inflated Poisson model

 - **Poisson outcome**

Forming Treatment Effects

Model whether user intends to brush as a binary outcome

Model brush time in seconds when user intends to brush as a

Modeling Zero-Inflated Outcome

- Use ROBAS data to model brush time in seconds under no message
- Zero-Inflated Poisson model

 - **Poisson outcome**

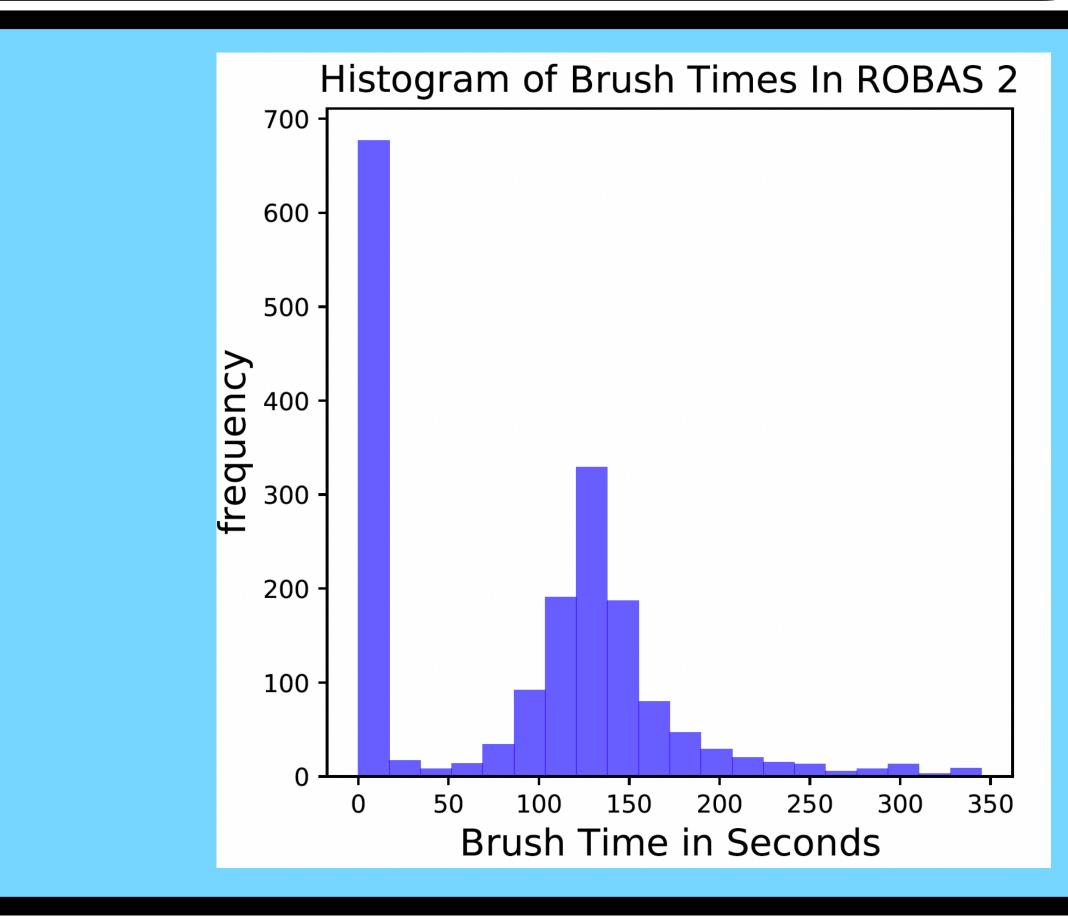
Forming Treatment Effects

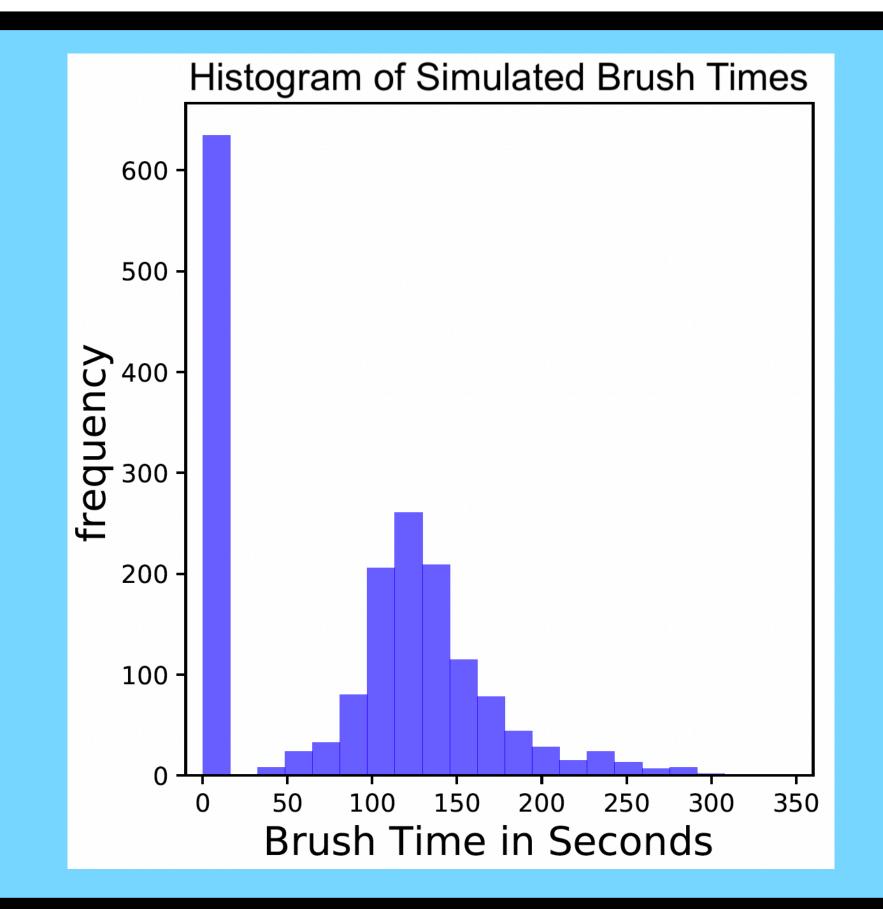
Model whether user intends to brush as a binary outcome

Model brush time in seconds when user intends to brush as a

One model per user (32 total) to accommodate user heterogeneity

Modeling Zero-Inflated Outcome





Modeling Zero-Inflated Outcome

Count model coefficients (pois

(Intercept)
Time.of.Day
Prior.Day.Brush.Time.norm
Proportion.Brushed.In.Past.7.
Day.in.Study.norm
Time.of.Day:Prior.Day.Brush.T

Zero-inflation model coefficie

(Intercept)
Prior.Day.Brush.Time.norm
Proportion.Brushed.In.Past.7.l
Day.in.Study.norm

sson	with	log	link)):	
		Esti	mate	Std. E	rror
		4.91	.3283	0.00	6276
		0.08	1599	0.00	5468
		0.13	8481	0.00	4236
Days	-	-0.12	8480	0.00	9166
		0.02	6660	0.00	5710
ime.norm -0.036234 0.005453					
	~ .		•		
ents	(bind	omial	with	n logit	link):
	Estin	nate	Std.	Error	
	0.17	7941	0.	. 10494	
	-0.63	3728	0.	.05852	
Days	-1.65	5646	0.	20382	
-		L647	0.	11126	

Modeling Zero-Inflated Outcome

Need to specify a model for the brush time in seconds when a message is sent

Modeling Zero-Inflated Outcome

- Need to specify a model for the brush time in seconds when a message is sent
- Construct plausible treatment effects with domain scientists

Forming Treatment Effects

Want to ensure our algorithm performs well in such settings

Modeling Zero-Inflated Outcome

- Need to specify a model for the brush time in seconds when a message is sent
- Construct plausible treatment effects with domain scientists
 - Want to ensure our algorithm performs well in such settings
- Conjecture: Messages will increase the probability of intending to brush rather than increase brush times when intending to brush

Modeling Zero-Inflated Outcome

- Need to specify a model for the brush time in seconds when a message is sent
- Construct plausible treatment effects with domain scientists
 - Want to ensure our algorithm performs well in such settings
- Conjecture: Messages will increase the probability of intending to brush rather than increase brush times when intending to brush
- How to construct treatment effects? Context-dependent effects?

Modeling Zero-Inflated Outcome

- Our Current Approach: Population Treatment Effect
 - Logistic regression model for whether the user brushes
- Our Current Approach: User-Specific Treatment Effect
 - Sample the treatment effect size for each user from $\mathcal{N}(0.2, \sigma^2)$

Fit Statistical Model

Action Selection Strategy

Fit Statistical Model

Fit model for expected reward conditional on context and action using all data collected so far (actions, context, rewards)

Action Selection Strategy

Fit Statistical Model

Fit model for expected reward conditional on context and action using all data collected so far (actions, context, rewards)

Action Selection Strategy

Use most recently <u>fitted statistical</u> <u>model</u> and <u>current context</u> <u>information</u> to form <u>micro-</u> <u>randomization probabilities</u>

Fit Statistical Model

Fit model for expected reward conditional on context and action using all data collected so far (actions, context, rewards)

Updated every night Requires all newly collected data

Action Selection Strategy

Use most recently <u>fitted statistical</u> <u>model</u> and <u>current context</u> <u>information</u> to form <u>micro-</u> <u>randomization probabilities</u>

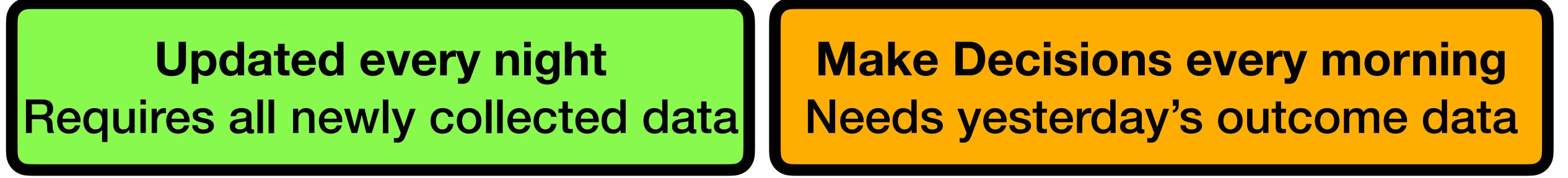
Fit Statistical Model

Fit model for expected reward conditional on context and action using all data collected so far (actions, context, rewards)

Updated every night

Action Selection Strategy

Use most recently fitted statistical model and current context information to form microrandomization probabilities



Fit Statistical Model

Fit model for expected reward conditional on context and action using all data collected so far (actions, context, rewards)

Bayesian Model

Action Selection Strategy

Use most recently <u>fitted statistical</u> <u>model</u> and <u>current context</u> <u>information</u> to form <u>micro-</u> <u>randomization probabilities</u>

"Posterior Sampling"

• Consider one user with decision times $t \in [1:70]$

- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message

- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message
- X_t context vector
 - Intercept, time of day, previous day brush time, Oralytics app engagement

- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message
- X_t context vector
 - Intercept, time of day, previous day brush time, Oralytics app engagement
- R_t brush time in seconds

63

- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message
- X_t context vector
 - Intercept, time of day, previous day brush time, Oralytics app engagement
- R_{t} brush time in seconds
- $H_{t-1} = \{X_t, A_t, R_t\}_{s=1}^{t-1}$ all data seen so far

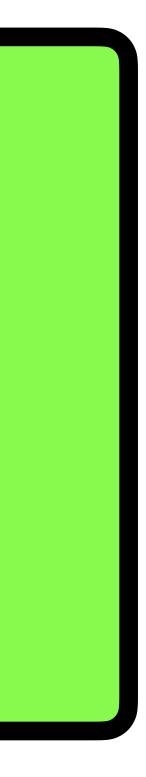
64

- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message
- X_t context vector
 - Intercept, time of day, previous day brush time, Oralytics app engagement
- R_{t} brush time in seconds
- $H_{t-1} = \{X_t, A_t, R_t\}_{s=1}^{t-1}$ all data seen so far

Fit Statistical Model

- $\mathbb{E}[R_t | X_t, A_t] = \theta_0^{\mathsf{T}} X_t + A_t \theta_1^{\mathsf{T}} X_t$ Informative prior $[\tilde{\theta}_0, \tilde{\theta}_1] \sim \mathcal{N}(\mu, \Sigma)$
- $R_t | X_t, A_t \sim \mathcal{N} \left(\tilde{\theta}_0^{\mathsf{T}} X_t + A_t \tilde{\theta}_1^{\mathsf{T}} X_t, \sigma^2 \right)$ Model rewards as

Update posterior distribution of $\tilde{\theta}_0, \tilde{\theta}_1$



- Consider one user with decision times $t \in [1:70]$
- $A_t \in \{0,1\}$ binary action
 - 0 = don't send a message
 - 1 = send a message
- X_t context vector
 - Intercept, time of day, previous day brush time, Oralytics app engagement
- R_{t} brush time in seconds
- $H_{t-1} = \{X_t, A_t, R_t\}_{s=1}^{t-1}$ all data seen so far $\mathbb{P}(A_t = 1 | X_t, H_{t-1}) = \mathbb{P}\left(\tilde{\theta}_1^\top X_t > 0 | X_t, H_{t-1}\right)$

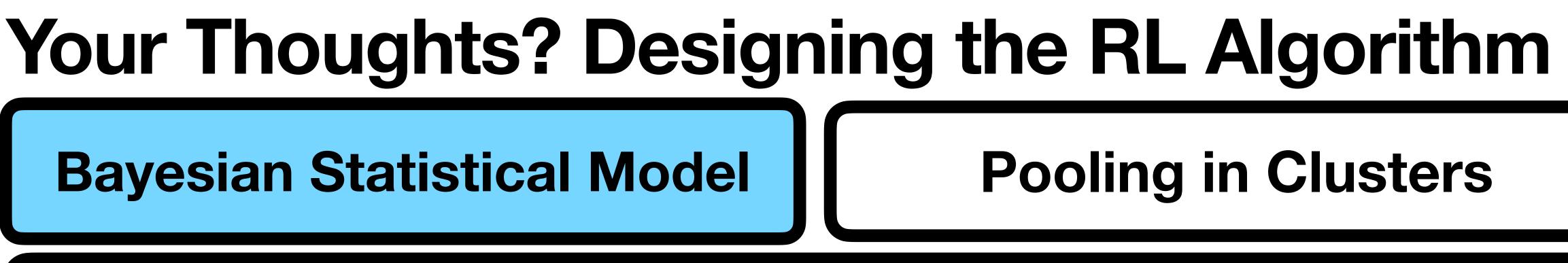
Fit Statistical Model

- $\mathbb{E}[R_t | X_t, A_t] = \theta_0^{\mathsf{T}} X_t + A_t \theta_1^{\mathsf{T}} X_t$
- Informative prior $[\tilde{\theta}_0, \tilde{\theta}_1] \sim \mathcal{N}(\mu, \Sigma)$
- **Model rewards as** $R_t | X_t, A_t \sim \mathcal{N} \left(\tilde{\theta}_0^\top X_t + A_t \tilde{\theta}_1^\top X_t, \sigma^2 \right)$
- Update posterior distribution of $\tilde{\theta}_0, \tilde{\theta}_1$

Action Selection Strategy Posterior probability that treatment effect is positive

) Model Zero-Inflated Brush Time Outcome?

No closed-form posterior for zero-inflated Poisson model



Your Thoughts? Designing the RL Algorithm **Bayesian Statistical Model Pooling in Clusters**

1) Model Zero-Inflated Brush Time Outcome?

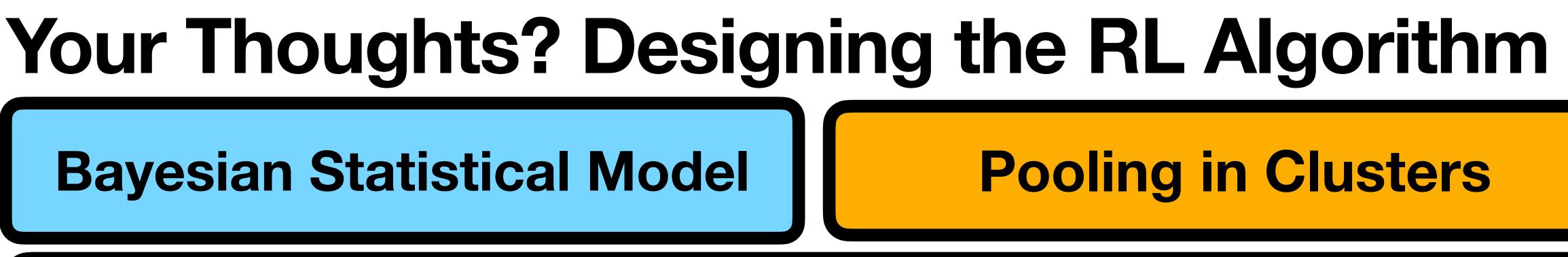
No closed-form posterior for zero-inflated Poisson model

(2) Model Brush Time as Continuous Outcome?

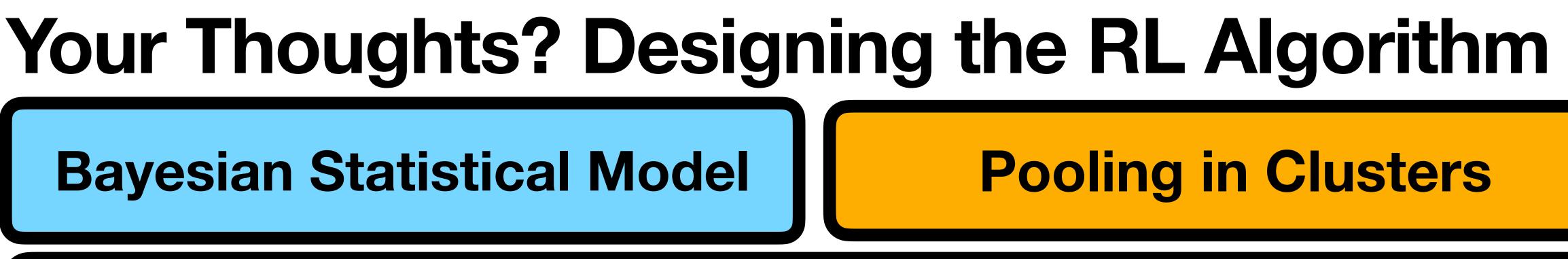
Ignores the zero-inflated nature of data

Your Thoughts? Designing the RL Algorithm **Bayesian Statistical Model Pooling in Clusters 1) Model Zero-Inflated Brush Time Outcome?** No closed-form posterior for zero-inflated Poisson model (2) Model Brush Time as Continuous Outcome? Ignores the zero-inflated nature of data (3) Model Brushing as Binary Outcome? Only model binary outcome of whether the user brushed

- The RL algorithm will pool the data of users in the same cluster to fit one statistical model per cluster
 - Increase the speed of RL algorithm learning / reduce noise

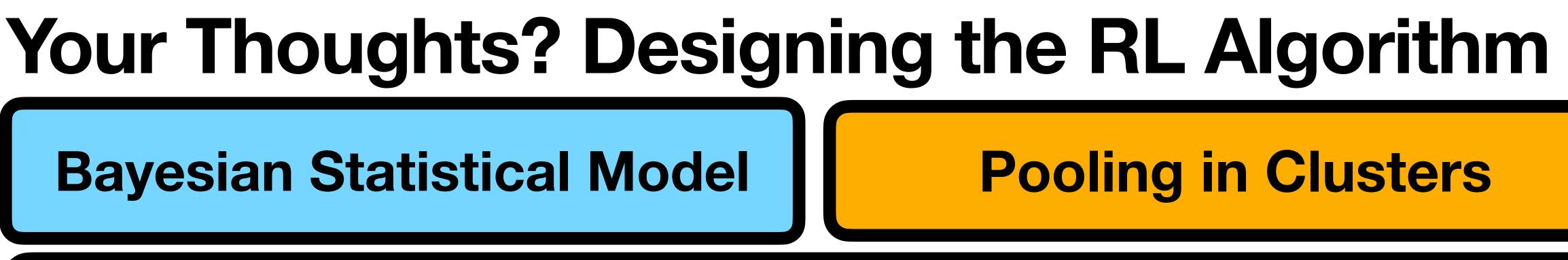


- The RL algorithm will pool the data of users in the same cluster together to fit one statistical model per cluster
 - Increase the speed of RL algorithm learning / reduce noise
- Planning to cluster users by entry date into the study



Incremental recruitment — limited by recruitment rate

- The RL algorithm will pool the data of users in the same cluster together to fit one statistical model per cluster
 - Increase the speed of RL algorithm learning / reduce noise
- Planning to cluster users by entry date into the study
 - Incremental recruitment limited by recruitment rate
- How to choose the cluster size?



Thank you!!

Back-Up Slides!!

"Micro-Randomized Trials [are] used to optimize JITAI decision rules, with the ultimate goal of developing an effective and efficient JITAI." (Qian et al., 2021)

The Micro-Randomized Trial for Developing Digital Interventions: Experimental Design and Data Analysis Considerations: https://arxiv.org/abs/2107.03544

 Which time-varying context is it best to send an intervention?

- Which time-varying context is it best to send an intervention?
- Which time-varying context is it best not to send an intervention?

- Which time-varying context is it best to send an intervention?
- Which time-varying context is it best not to send an intervention?
- Do the intervention options differentially impact the proximal outcome?

- Which time-varying context is it best to send an intervention?
- Which time-varying context is it best not to send an intervention?
- Do the intervention options differentially impact the proximal outcome?
- Does the main effect deteriorate with time (day since beginning intervention)?

Oralytics MRT Scientific Questions

 Primary Analysis: "On average across time, does delivering messages increase the brushing quality at the next brushing window after the message is delivered, compared to no message?"

Oralytics MRT Scientific Questions

• Primary Analysis: "On average across time, does delivering messages increase the brushing quality at the next brushing window after the message is delivered, compared to no message?"

Secondary Analysis: Effect moderation

- Previous day brush time at same time of day
- Time of day
- Engagement binary indicator prior to decision time.
- Gender
- Age
- Ethnicity