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Introduction to inference on bandit
data



What are bandits?

Bandit algorithms are strategies for regret minimization
in sequential decision making problems.

t=1 t=2 t=3 t=4 t=5
Treatment arm 0 0.2 0.3 ?
Treatment arm 1 0.4 0.3 ?

• The regret of an bandit algorithm is how much worse
it performs in terms of average cumulative reward
compared to an oracle algorithm.

• Bandit literature primarily focused on developing
algorithms that will minimize regret.
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Bandits in the real world

Taking advantage of regret minimization

• Advertisements
• Learn to show ads that are more
interesting or relevant to users

• Mobile health
• Learn when to send suggestions
to users to best help them engage
in healthy behaviors

• Online education
• Learn to use more effective
teaching strategies
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Need for uncertainty quantification!

I have run my bandit algorithm. Now from the resulting
data can I infer...

• Is one treatment arm better than another?

• What is the magnitude of the difference in
effectiveness of given treatments?

Note that bandit algorithms themselves do not give us
any way to answer these questions.

Regret minimization vs. Uncertainty quantification
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Importance of Estimating Treatment Effect

Suppose we ran an online education experiment using a
bandit algorithm to test different teaching strategies.

If we could infer the treatment effect between bandit arms...

• When designing a new online course...
• Under-performing arms could be eliminated or
modified

• High-performing arms could be studied further
• Could potentially publish findings, e.g., that one teaching
strategy is better than another

• Identify new research directions
• Make more informed high-level decisions regarding what
new courses to design or fund
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Confidence intervals for treatment effect

• We don’t use high probability concentration bounds
• Confidence intervals too wide for many applications

• We use asymptotic distribution of estimator of
treatment effect to approximate small sample

• Long history of being effect in classical statistics
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Batched bandit setting

• Fix number of batches T
• Select n arms in each batch
• nT arm pulls total. Update bandit algorithm T times

For example, this corresponds to online advertising problems
in which ads are sent out to many users simultaneously.

• We analyze asymptotics as n (batch size) goes to
infinity with T (number of batches) fixed

• We do not need n to go to infinity in real experiments
• We analyze asymptotics to get good approximation
of finite sample behavior of estimators
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Notation and Assumptions

We focus on the two-arm bandit setting.

• Expected rewards: β0, β1
• Treatment effect: ∆ = β1 − β0

• Action selection probabilities: πt ∈ [0, 1], function of
history Ht−1

• Actions: {At,i}ni=1
i.i.d.∼ Bernoulli(πt)

• Rewards: {Rt,i}ni=1 with Rt,i = β1,tAt,i + β0,t(1− At,i) + εt,i
and E[εt,i|Ht−1,At,i] = 0

• History: Ht = ∪t′<t{At′,i,Rt′,i}ni=1
• Batch Action Selection Count: Nt =

∑n
i=1 At,i

8



Notation and Assumptions

We focus on the two-arm bandit setting.

• Expected rewards: β0, β1
• Treatment effect: ∆ = β1 − β0

• Action selection probabilities: πt ∈ [0, 1], function of
history Ht−1

• Actions: {At,i}ni=1
i.i.d.∼ Bernoulli(πt)

• Rewards: {Rt,i}ni=1 with Rt,i = β1,tAt,i + β0,t(1− At,i) + εt,i
and E[εt,i|Ht−1,At,i] = 0

• History: Ht = ∪t′<t{At′,i,Rt′,i}ni=1
• Batch Action Selection Count: Nt =

∑n
i=1 At,i

8



Notation and Assumptions

We focus on the two-arm bandit setting.

• Expected rewards: β0, β1
• Treatment effect: ∆ = β1 − β0

• Action selection probabilities: πt ∈ [0, 1], function of
history Ht−1

• Actions: {At,i}ni=1
i.i.d.∼ Bernoulli(πt)

• Rewards: {Rt,i}ni=1 with Rt,i = β1,tAt,i + β0,t(1− At,i) + εt,i
and E[εt,i|Ht−1,At,i] = 0

• History: Ht = ∪t′<t{At′,i,Rt′,i}ni=1
• Batch Action Selection Count: Nt =

∑n
i=1 At,i

8



Notation and Assumptions

We focus on the two-arm bandit setting.

• Expected rewards: β0, β1
• Treatment effect: ∆ = β1 − β0

• Action selection probabilities: πt ∈ [0, 1], function of
history Ht−1

• Actions: {At,i}ni=1
i.i.d.∼ Bernoulli(πt)

• Rewards: {Rt,i}ni=1 with Rt,i = β1,tAt,i + β0,t(1− At,i) + εt,i
and E[εt,i|Ht−1,At,i] = 0

• History: Ht = ∪t′<t{At′,i,Rt′,i}ni=1
• Batch Action Selection Count: Nt =

∑n
i=1 At,i

8



Contributions

• Proving that OLS estimator does not converge
uniformly on bandit data

• Assuming the OLS estimator is asymptotically normal
can lead to inflated Type-1 errors and unreliable
confidence intervals

• Prove that the Batched OLS estimator is
asymptotically normal

• Can construct confidence intervals for treatment
effect on bandit data

• Not specific to a particular bandit algorithm—works
for a variety of algorithms

• Robust to non-stationarity in the baseline reward
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Why not use standard statistical
estimators on bandit data?



Induced dependence

• For bandit data, {At,i,Rt,i}Tt=1 are not independent.

• Actions At,i depend the history of past actions and
rewards Ht−1, i.e., {At′,i,Rt′,i}ni=1 for t′ < t.

However, most asymptotic results for statistical
estimators assume independence!

We now discuss what can go wrong...
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Bias: Example of what can go wrong?

How is bandit data different from i.i.d data?

• Standard statistical estimators that are unbiased on
i.i.d. data can be biased on bandit data.

• For example, on bandit data the sample mean is a
biased estimator of the expected reward for a given
arm [Shin et al., 2019, Nie et al., 2018].
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3 sample illustration of bias

Suppose we have two arms that both have zero mean
reward and we follow a greedy policy.

• Rewards: R1,R2,R3
i.i.d.∼ N (0, 1)

• Actions: A1,A2,A3 ∈ {0, 1}

Suppose A1 = 1, A2 = 0 and A3 = I(R1>R2) (greedy strategy).

Sample means:

β̂1 =
R1 + A3R3
1+ A3

β̂0 =
R2 + (1− A3)R3
1+ (1− A3)

12
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3 sample illustration of bias

E[β̂1] = E
[
R1 + A3R3
1+ A3

]

= P(R1 > R2)E
[
R1 + R3
2

∣∣∣∣ A3 = 1
]
+ P(R1 ≤ R2)E[R1 | A3 = 0]

=
1
2
E
[
R1 + R3
2

∣∣∣∣ R1 > R2
]
+
1
2
E[ R1 | R1 ≤ R2]

Let Z1, Z2
i.i.d.∼ N (0, 1); Zmax := max(Z1, Z2) and Zmin := min(Z1, Z2).

=
1
4
E[ Zmax ] +

1
2
E[ Zmin ]

Since E[Zmax] = −E[Zmin] by symmetry,

= − 1
4
E[ Zmax ] < 0
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Asymptotic Distribution of the OLS Estimator

OLS Estimator of ∆:

∆̂OLS =

∑T
t=1

∑n
i=1 At,iRt,i∑T
t=1 Nt

−
∑T

t=1
∑n

i=1(1− At,i)Rt,i∑T
t=1(n− Nt)

where Nt =
∑n

i=1 At,i

On i.i.d data, we have asymptotic normality:√
(
∑T

t=1 Nt)(
∑T

t=1 n− Nt)
nT

(∆̂OLS −∆)
D→ N (0, σ2)

On bandit data, the same asymptotic normality result holds if
(result by Lai & Wei, 1982):

For some non-random sequence of scalars {an}∞n=1, as n→ ∞,

an ·
1
nT

T∑
t=1

Nt
P→ 1.

14
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Asymptotic Distribution of the OLS Estimator (cont.)

1. εt,i satisfy moment conditions
2. πt ∈ [πmin, πmax] for constants 0 < πmin ≤ πmax < 1

If ∆ 6= 0:

• The conditions of Lai & Wei’s central limit theorem hold.

• ∆̂OLS is asymptotically Normal

If ∆ = 0:
• The conditions of Lai & Wei’s CLT do not to hold.

• ∆̂OLS is asymptotically non-Normal

• For common bandit algorithms, including Thompson
Sampling and ε-greedy
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Asymptotic Distribution of the OLS Estimator (cont.)
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Inflated Type-1 Error!

H0 : ∆ = 0 vs. H1 : ∆ 6= 0
Z-statistic for treatment effect when the null hypothesis

is true

ε-greedy Thompson Sampling
N (0, 1) rewards, T = 25, n = 100, β1 = β0 = 0

16



Why? Non-concentration of πt

Non-Zero Treatment Effect Case

πt will converge to the optimal policy (πmin or πmax)

Zero Treatment Effect Case

No unique optimal policy, so πt does not concentrate as
n→ ∞
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Non-uniform convergence & unreliable confidence
intervals!

Signal-to-noise
ratio: |∆|

σ

Thompson Sampling,
N (0, 1) rewards, T = 25

For any batch size
n, we can find a
treatment effect
size ∆ such would
lead to confidence
intervals that
undercover.

We construct 95% confidence intervals assuming
the OLS estimator is approximately Normal. 18
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Recap of findings

On bandit data, the OLS estimator does not converge
uniformly over a range of different treatment effect sizes

• Problems not limited to bias
• Type-1 error inflation and unreliable confidence
intervals

19



Introduce the Batched OLS estimator



Non-stationarity in real world problems

Online advertisements
Effectiveness of ads may change over time due to...

• Previous exposure to the same ad make it less
effective

• Introduction of competing ads
• General societal changes

Mobile health
Effectiveness of messages may change over time due to...

• Habituation to notifications over time
• General changes in a person’s routine

20
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Introducing the Batched OLS estimator

Idea: Compute OLS estimator on each batch separately.
Construct Z-statistic for each batch and show
multivariate normality.

Standard OLS Estimator:

∆̂OLS =

∑T
t=1

∑n
i=1 At,iRt,i∑T
t=1 Nt

−
∑T

t=1
∑n

i=1(1− At,i)Rt,i∑T
t=1(n− Nt)

Batched OLS Estimator:
For each batch t ∈ [1 : T],

∆̂BOLS
t =

∑n
i=1 At,iRt,i
Nt

−
∑n

i=1(1− At,i)Rt,i
n− Nt

21
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−
∑T

t=1
∑n

i=1(1− At,i)Rt,i∑T
t=1(n− Nt)

Batched OLS Estimator:
For each batch t ∈ [1 : T],

∆̂BOLS
t =

∑n
i=1 At,iRt,i
Nt

−
∑n

i=1(1− At,i)Rt,i
n− Nt
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Batched OLS (BOLS) Multivariate CLT

Asymptotic Normality of BOLS

1. E[ε2t,i
∣∣Ht−1,At,i] = σ2 and E

[
ε4t,i

∣∣Ht−1,At,i] < M < ∞ for all t,n, i.
2. P(πt ∈ [f (n), 1− f (n)]) → 1 for non-random f (n) = ω( 1n ).

1

If the above two conditions hold then as n→ ∞,

√
(n−N1)N1

n (∆̂BOLS
1 −∆1)√

(n−N2)N2
n (∆̂BOLS

2 −∆2)
...√

(n−NT)NT
n (∆̂BOLS

T −∆T)


D→ N (0, σ2IT)

We show a similar asymptotic normality result for BOLS for K-armed
linear contextual bandits. See our paper for more details!

1f (n)n→ ∞
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Key to Batched OLS

The key to proving asymptotic normality for BOLS is that
the following ratio converges in probability to one:

Nt
nπt

P→ 1.

Since πt is constant given Ht−1, even if πt does not
concentrate, we are still able to apply the martingale CLT
to prove asymptotic normality.
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BOLS Test statistic

There are many hypotheses we could test using the BOLS
multivariate Normality result. Here we consider the following
hypotheses:

H0 : ∆ = c vs. H1 : ∆ 6= c

1√
T

T∑
t=1

√
(n− Nt)Nt

nσ2
(∆̂BOLS

t − c)

By our multivariate CLT for BOLS, the above will be
asymptotically normal under the null.

BOLS is robust to non-stationarity in the baseline reward, i.e.,
βt,1, βt,0 can change from batch to batch, but

∆t := βt,1 − βt,0 = c for all t.
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Other estimators we compare to

W-Decorrelated [Deshpande et al., 2018]

• Adjusted version of the OLS estimator
• Requires choosing a tuning parameter λ, which
allows practitioners to trade off bias for variance

Adaptively-Weighted Augmented Inverse Probability
Weighted Estimator (AW-AIPW) [Hadad et al., 2019]

• Reweights the samples of a regular AIPW estimator
with adaptive weights that are non-anticipating

Note that neither of these estimators have guarantees in
non-stationary settings.
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Simulations: Stationary setting Type-1 error

H0 : ∆ = 0
H1 : ∆ 6= 0

Type-1 error
Probability of
incorrectly rejecting
null hypothesis
(constrained ≤ 0.05).

N (0, 1) rewards, n = 25,
β1 = β0 = 0
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Simulations: Stationary setting power

Power
Probability of correctly
rejecting null
hypothesis.

N (0, 1) rewards, n = 25,
β1 = 0.25, β0 = 0
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Simulations: Non-stationary baseline reward

Fixed treatment effect
H0 : ∆t = 0,∀t
H1 : ∆t = c,∀t for c 6= 0

Figure 1: Zero treatment effect (H0)

Figure 2: Non-zero treatment effect (H1)
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Simulations: Non-stationary baseline reward

BOLS still has
proper Type-1
error control and
high power.
Other estimators have
no guarantees in the
non-stationary setting.
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Conclusion

• We demonstrate that that standard statistical
estimators can converge non-uniformly on bandit
data.

• Assuming asymptotic normality of the OLS estimator
can lead to inflated Type-1 error and unreliable
confidence intervals on bandit data.

• We develop the BOLS estimator that is asymptotically
normal even when the treatment effect is zero.

• BOLS is robust to non-stationarity over batches.
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Directions for Future Work

• Batched version of method-of-moments estimators
• Allowing for correlation between rewards over
batches

• Trade-off between regret minimization and power of
statistical tests
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