Statistical Inference with M-Estimators on Adaptively Collected Data

Objectives in Sequential Decision Making

1. Personalize treatment actions to provide best user experience

- Regret minimization / Choose best actions compared to an oracle policy
- Bandit / RL algorithms are designed to optimize this objective

2. Assess Causal Effects

- Use data collected to gain generalizable knowledge
- Example: construct confidence intervals for a treatment effect

Contextual Bandit Environment

- Contextual Bandit Variables:
 - A_t are **actions** (different types of ads)
 - X_t are **contexts** (type of website, recent user behavior)
 - Y_t are **outcomes** (click-through rate, money spent)
- $R_t = f(Y_t)$ are **rewards**
- Potential Outcomes: $\{X_t, Y_t(a) : a \in \mathscr{A}\}_{t=1}^T$ i.i.d. over t
- History: $H_{t-1} = \{X_s, A_s, Y_s\}_{s-1}^{t-1}$
- Bandit algorithm determines action selection probabilities: $\mathbb{P}\left(A_{t}=a \mid H_{t-1}, X_{t}\right)$

Bandit Algorithms Induce Dependence

Observations $\{X_t, A_t, Y_t\}$ are not independent over $t \in [1: T]$

- Use past observations H_{t-1} to inform what action A_t to select next
- Bandit data is "adaptively collected"

Consequences for Statistical Inference

• Violates independence assumptions of standard statistical inference methods —> Bias, Asymptotically non-normal

Billary Action 0460					
Potential Outcomes	t=1	t=2	t=3		t=T
Contexts	X_1	<i>X</i> ₂	<i>X</i> ₃		X _T
Potential Outcomes Under Treatment 0	<i>Y</i> ₁ (0)	<i>Y</i> ₂ (0)	<i>Y</i> ₃ (0)		<i>Y_T</i> (0)
Potential Outcomes Under Treatment 1	$Y_{1}(1)$	<i>Y</i> ₂ (1)	<i>Y</i> ₃ (1)		<i>Y_T</i> (1)
Actions Selected by Bandit Algorithm	$A_1 = 0$	$A_2 = 1$	$A_3 = 1$		$A_T = 0$

Binary Action Case

 $\mathbb{E}[Y_t]$

 Generalized Linear Models Many standard estimators are **M-estimators**: least squares, logistic regression, maximum likelihood

Adaptive Square-Root Inverse Propensity Weights

Rather than consider standard M-estimators, we consider we use an adaptively weighted M-estimator:

We choose **square-root propensity** weights as follows:

 W_t are **adaptive** because they depend on history H_{t-1} .

Estiman

 $\theta^* = arg$

Estimat

$$\left[\frac{1}{T}\sum_{t=1}^{T}W_{t}\right]$$

Kelly W. Zhang, Lucas Janson, Susan A. Murphy

Statistical Analysis Objective

We are interested in constructing confidence regions for the true

value of θ , which parameterizes an outcome model, e.g.,

• Linear Model: $\mathbb{E}[Y_t | X_t, A_t] = X_t^{\mathsf{T}} \theta_0 + A_t X_t^{\mathsf{T}} \theta_1$

Logistic Regression Model:

$$X_t, A_t] = \left[1 + \exp\left(-X_t^{\top}\theta_0 - A_t X_t^{\top}\theta_1\right)\right]$$

$$\hat{\theta}_T := \operatorname{argmax}_{\theta \in \Theta} \left\{ \sum_{t=1}^T m_{\theta}(Y_t, X_t, A_t) \right\}$$

$$\hat{\theta}_T := \operatorname{argmax}_{\theta \in \Theta} \left\{ \sum_{t=1}^T W_t m_{\theta}(Y_t, X_t, A_t) \right\}$$

$$W_t = \frac{1}{\sqrt{\mathbb{P}(A_t \mid H_{t-1}, X_t)}}$$

Asymptotic Normality Result

nd:

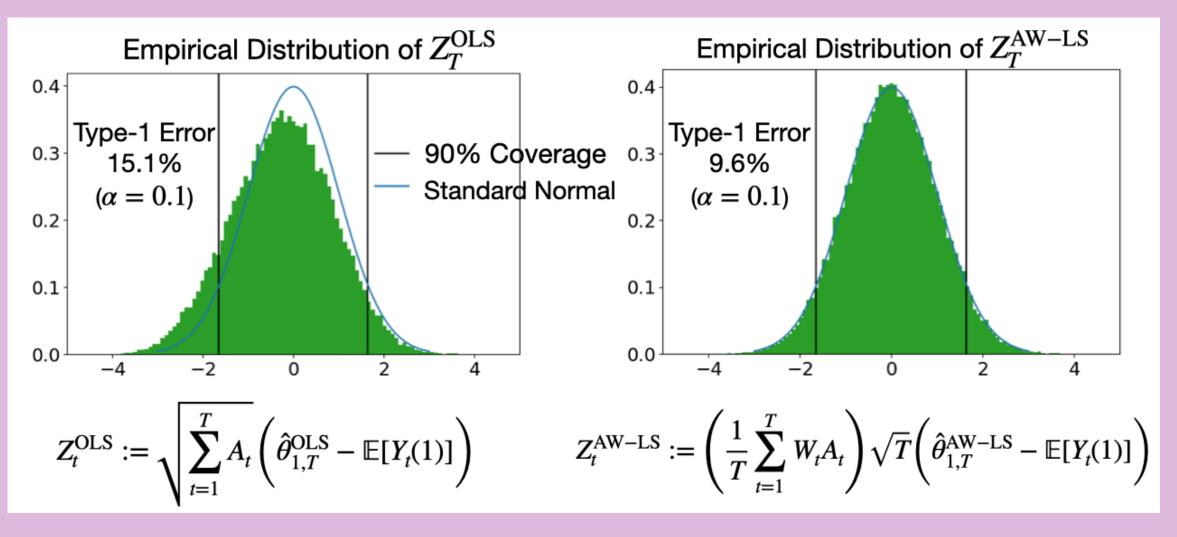
$$gmax_{\theta \in \Theta} \left\{ \mathbb{E} \left[m_{\theta}(Y_t, X_t, A_t) \left| X_t, A_t \right] \right\} \text{ for all } X_t, A_t$$
or: $\hat{\theta}_T = \operatorname{argmax}_{\theta \in \Theta} \left\{ \sum_{t=1}^T W_t m_{\theta}(Y_t, X_t, A_t) \right\}$

Asymptotic Normality:

$$\left(\frac{\partial^2}{\partial \theta \partial \theta^{\mathsf{T}}} m_{\hat{\theta}_T}(Y_t, X_t, A_t) \right) \right] \sqrt{T}(\hat{\theta}_T - \theta^*)$$

$$\frac{D}{\rightarrow} N \left(0, \sum_{a \in \mathscr{A}} \mathbb{E} \left[\left(\frac{\partial}{\partial \theta} m_{\theta^*}(Y_t, X_t, a) \right)^{\otimes 2} \right] \right)$$

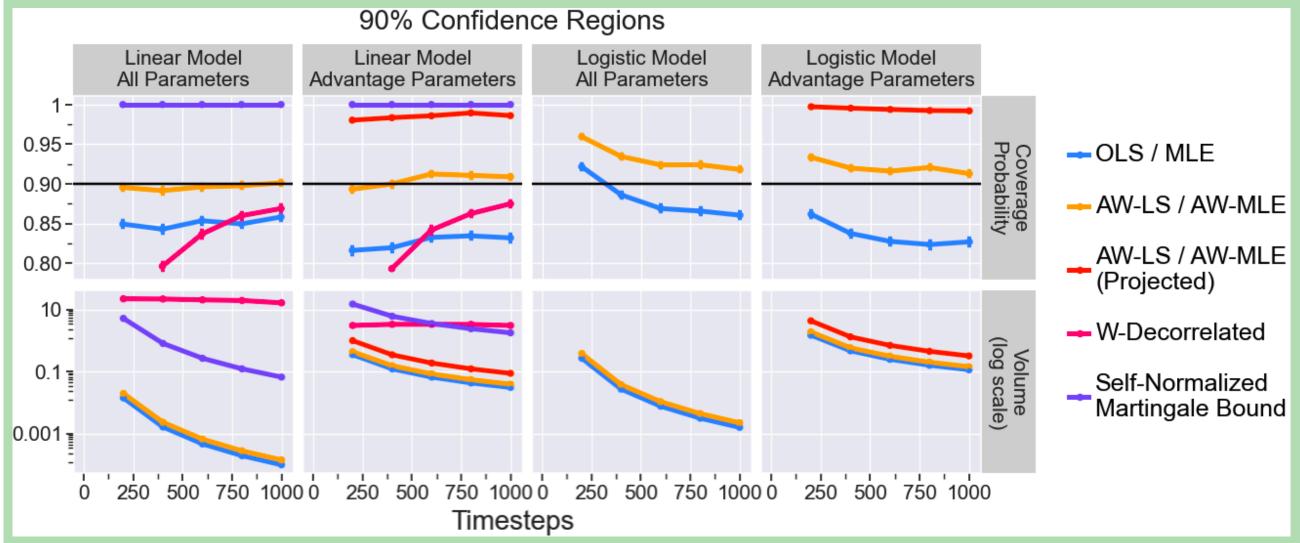
Least Squares With and Without Adaptive Weights



- Binary actions $A_t \in \{0,1\}$
- Reward Types

. Binary:

- Estimators
 - Squares



Data generating process: Two-arm bandit with arm means $\theta^* = [\theta_1^*, \theta_2^*]^\top = [0, 0]^\top$. Thompson Sampling with N(0,1) priors, N(0,1) noise on rewards, and T = 1000.

Simulations in Contextual Bandit Setting

• Context X_t is 3-dimensional (including intercept)

• Continuous: $R_t = X_t^{\top} \theta_0^* + A_t X_t^{\top} \theta_1^* + \epsilon_t$ for ϵ_t t-distributed $R_t | X_t, A_t \sim \text{Bernoulli} \left(X_t^\top \theta_0^* + A_t X_t^\top \theta_1^* \right)$

• $\theta^* = [\theta_0^*, \theta_1^*]$ where $\theta_1^* = [0, 0, 0]$ (advantage parameters) and $\theta_0^* = [0.1, 0.1, 0.1]$ • Posterior Sampling contextual bandit algorithm used to select actions A_t

Continuous rewards: Least Squares (OLS) and Adaptively Weighted-Least

• **Binary Rewards:** Logistic Regression / MLE and Adaptively Weighted-MLE

Acknowledgements: This work is supported by NIAAA (award number R01AA23187), NIDA (award number P50DA039838), NCI (award number U01CA229437), and by NIH/NIBIB and OD (number P41EB028242). This work is also supported by the NSF Graduate Research Fellowship Program (Grant No. DGE1745303).