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Objectives in Sequential Decision Making

Contextual Bandit Environment

Statistical Analysis Objective
We are interested in constructing confidence regions for the true 

value of , which parameterizes an outcome model, e.g., 

• Linear Model:   

• Logistic Regression Model:   

 

• Generalized Linear Models 
Many standard estimators are M-estimators: least squares, logistic 
regression, maximum likelihood 

        

θ
![Yt |Xt, At] = X⊤

t θ0 + AtX⊤
t θ1

![Yt |Xt, At] = [1 + exp (−X⊤
t θ0 − AtX⊤

t θ1)]

̂θT := argmaxθ∈Θ {
T

∑
t=1

mθ(Yt, Xt, At)}

Data generating process: Two-arm bandit with arm means . 
Thompson Sampling with  priors,  noise on rewards, and . 

θ* = [θ*1 , θ*2 ]⊤ = [0,0]⊤

N(0,1) N(0,1) T = 1000

Simulations in Contextual Bandit Setting

1. Personalize treatment actions to provide best user 
experience 

• Regret minimization / Choose best actions compared to an 
oracle policy


• Bandit / RL algorithms are designed to optimize this objective 
 
2. Assess Causal Effects 

• Use data collected to gain generalizable knowledge

• Example: construct confidence intervals for a treatment effect

• Contextual Bandit Variables: 
•  are actions (different types of ads) 

•  are contexts (type of website, recent user behavior) 

•  are outcomes (click-through rate, money spent) 

•  are rewards 

• Potential Outcomes:  i.i.d. over 


• History:   

• Bandit algorithm determines action selection probabilities:  

At
Xt
Yt
Rt = f(Yt)

{Xt, Yt(a) : a ∈ '}T
t=1 t

Ht−1 = {Xs, As, Ys}t−1
s=1

ℙ (At = a |Ht−1, Xt)

Observations  are not independent over  

• Use past observations  to inform what action  to select 
next


• Bandit data is “adaptively collected”

Consequences for Statistical Inference 
• Violates independence assumptions of standard statistical 

inference methods —> Bias, Asymptotically non-normal

{Xt, At, Yt} t ∈ [1 : T ]
Ht−1 At

Binary Action Case

Bandit Algorithms Induce Dependence

Rather than consider standard M-estimators, we consider we use 
an adaptively weighted M-estimator: 

         

 
We choose square-root propensity weights as follows:


                    


 are adaptive because they depend on history .

̂θT := argmaxθ∈Θ {
T

∑
t=1

Wtmθ(Yt, Xt, At)}

Wt = 1
ℙ(At |Ht−1, Xt)

Wt Ht−1

Adaptive Square-Root Inverse Propensity Weights • Context  is 3-dimensional (including intercept)

• Binary actions 

• Reward Types


• Continuous:    for  t-distributed


• Binary:           


•  where  (advantage parameters) and 


• Posterior Sampling contextual bandit algorithm used to select actions 

• Estimators


• Continuous rewards: Least Squares (OLS) and Adaptively Weighted-Least 
Squares


• Binary Rewards: Logistic Regression / MLE and Adaptively Weighted-MLE

Xt
At ∈ {0,1}

Rt = X⊤
t θ*0 + AtX⊤

t θ*1 + ϵt ϵt

Rt |Xt, At ∼ Bernoulli (X⊤
t θ*0 + AtX⊤

t θ*1 )
θ* = [θ*0 , θ*1 ] θ*1 = [0,0,0] θ*0 = [0.1,0.1,0.1]

At

Estimand:   
 for all 


Estimator:  


Asymptotic Normality:


               

θ* = argmaxθ∈Θ {! [mθ(Yt, Xt, At) Xt, At]} Xt, At

̂θT = argmaxθ∈Θ {
T

∑
t=1

Wtmθ(Yt, Xt, At)}

Asymptotic Normality Result

[ 1
T

T

∑
t=1
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